• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,824, Processing Time 0.033 seconds

The Effect of Alkali Metal Ions (Na, K) on NH3-SCR Response of V/W/TiO2 (알칼리 금속 이온(Na, K)이 V/W/TiO2의 NH3-SCR 반응인자에 미치는 영향)

  • Yeo, Jonghyeon;Hong, Sungchang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.560-567
    • /
    • 2020
  • In this study, we investigated that the effect of alkali metals [Na(Sodium) and K(Potassium)], known as representative deactivating substances among exhaust gases of various industrial processes, on the NH3-SCR (selective catalytic reduction) reaction of V/W/TiO2 catalysts. NO, NH3-TPD (temperature programmed desorption), DRIFT (diffuse reflectance infrared fourier transform spectroscopy analysis), and H2-TPR analysis were performed to determine the cause of the decrease in activity. As a result, each alkali metal acts as a catalyst poisoning, reducing the amount of NH3 adsorption, and Na and K reduce the SCR reaction by reducing the L and B acid points that contribute to the reaction activity of the catalyst. Through the H2-TPR analysis, the alkali metal is considered to be the cause of the decrease in activity because the reduction temperature rises to a high temperature by affecting the reduction temperature of V-O-V (bridge oxygen bond) and V=O (terminal bond).

Antioxidative Activity of the Water Soluble Browning Reaction Products from Korean Red Ginseng (고려홍삼으로부터 분리한 수용성 갈변물질의 항산화 활성)

  • Lee, Jong-Won;Park, Chae-Kyu;Do, Jae-Ho
    • Journal of Ginseng Research
    • /
    • v.29 no.1
    • /
    • pp.44-48
    • /
    • 2005
  • The purpose of this study was to investigate the biological activities of water soluble browning reaction products(WS-BRPs) isolated from korean red ginseng. Antioxidative activities of WS-BRPs were examined with the various systems. Three different fractions prepared by os moly tic treatment of WS-BRP(fraction L, S-l and S-2) were found to have an ability to donate hydrogen to DPPH and also exhibited the inhibitory activities in lipid peroxidation, consumption of oxygen and protein oxidation of mitochondrial fraction. Especially, L had the strongest activity of these three WS­BRPs in scavenging free radicals. Lipid peroxidation showed the antioxidant effect on linoleic acid oxidation inhibition ratio of $22.5\%,\;31.7\%,\;31.9\%\;and\;33.5\%$, respectivity. And the consumption of oxygen was strongly inhibited by $49.52\%,\;62,44,\;97.54\%$. But three WS-BRPs showed weak inhibitory activity on lipid peroxidation in rat hepatic microsomes.

Study on the Thermal Degradation Behavior of FKM O-rings

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yoon, Yoo-Mi;Park, Sung Han;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • The degradation mechanism and physical properties of an FKM O-ring were observed with thermal aging in this experiment. From X-ray photoelectron spectroscopy (XPS) analysis, we could observe carbon (285 eV), fluoro (688 eV), and oxygen (531 eV) peaks. Before thermal aging, the concentration of fluoro atoms was 51.23%, which decreased to 8.29% after thermal aging. The concentration of oxygen atoms increased from 3.16% to 20.39%. Under thermal aging, the FKM O-ring exhibited debonding of the fluoro-bond by oxidation. Analysis of the C1s, O1s, and F1s peaks revealed that the degradation reaction usually occurred at the C-F, C-F2, and C-F3 bonds, and generated a carboxyl group (-COOH) by oxidation. Due to the debonding reaction and decreasing mobility, the glass transition temperature of the FKM O-ring increased from $-15.91^{\circ}C$ to $-13.79^{\circ}C$. From the intermittent CSR test, the initial sealing force was 2,149.6 N, which decreased to 1,156.2 N after thermal aging. Thus, under thermal aging, the sealing force decreased to 46.2%, compared with its initial state. This phenomenon was caused by the debonding reaction and decreasing mobility of the FKM O-ring. The S-S curve exhibited a 50% increase in modulus, with break at a low strain and stress state. This was also attributed to the decreasing mobility due to thermal aging degradation.

Protective Effects of Calcium Antagonists and Vitamine E on the Ischemia-induced Neuronal Damage in Rat Brain Slices (랫트 뇌절편에서의 허혈성 신경손상에 대한 칼슘길항제와 비타민의 보호효과)

  • Kim, Yong-Sik;Yoon, Young-Ran;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.9-22
    • /
    • 1993
  • To evaluate the protective effects of calcium antagonists, oxygen radical scavengers and excitatory amino acid (EAA) antagonist on the ischemic brain damage, we induced in vitro ischemic condition (namely, lack of oxygen and glucose) to rat hippocampal slices. And the degree of ischemic damage was determined by assaying changes in biochemical parameters such as ATP content and lactate ralease, MDA production in the presence or absence of the various drugs. During experimental ischemia for up to 60 min, ATP content was decreased and the amount of lactate release was markedly increased time-dependently. By changing the reaction medium which contained oxygen and glucose those biochemical parameters were recovered. But the recovery was not complete in this experimental condition. In the same ischemic conditions verapamil and vitamine E prevented the decrease of ATP content and the increase of lactate release from the slices. And verapamil and diltiazem decreased MDA release to the reaction medium. Superoxide dismutase (SOD) and MK-801 (as EAA receptor antagonist) protected the decrease of ATP content and reduced MDA release in 20 min ischemic condition, but glutathione affected ATP content and lactate release at the same condition. When oxygen and glucose were resupplied for 20 min after ischemic condition, verapamil showed the protective effect on the changes of ATP content and lactate release, and vitamine E decreased lactate release (at 20 min ischemia) and MDA release (at 60 min ischemia). These results showed that calcium antagonist and vitamine E protect the ischemic biochemical changes from rat hippocampal slices and calcium antagonist is more potent than vitamine E to protect the ischemical brain damege.

  • PDF

A Study on Plasma Etching Reaction of Cobalt for Metallic Surface Decontamination (금속 표면 제염을 위한 코발트의 플라즈마 식각 반응 연구)

  • Jeon, Sang-Hwan;Kim, Yong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • In this study, plasma processing of metal surface is experimentally investigated to enhance the surface decontamination efficiency and to find out the reaction mechanism. Cobalt, the major contaminant in the nuclear facilities, and three fluorine-containing gases, $CF_4/O_2$, $SF_6/O_2$, and $NF_3$ are chosen for the investigation. Thin metallic disk specimens are prepared and their surface etching reactions with the three plasma gases are examined. Results show that the maximum etching rate of $17.2\;{\mu}m/min.$ is obtained with NF3 gas at $420^{\circ}C$, while with $CF_4/O_2$, $SF_6/O_2$ gas plasmas those of $2.56\;{\mu}m/min.$ and $1.14\;{\mu}m/min.$ are obtained, respectively. Along with etching experiments, constituent elements of the reaction products are identified to be cobalt, oxygen, and fluorine by AES (Auger Electron Spectroscopy) analysis. It turns out that the oxygen atoms are physically adsorbed ones to the surface from the ambient not participation ones during the analysis after reaction, which supports that the surface reaction of cobalt is mainly to be a fluorination reaction.

  • PDF

A Reaction Kinetic for Selective Catalytic Reduction of NOx with NH3 over Manganese Oxide (NMO, MnO2, Mn2O3) at Low Temperature (망간산화물(NMO, MnO2, Mn2O3)을 이용한 저온에서의 NH3-SCR의 반응속도 연구)

  • Kim, Min Su;Hong, Sung Chang
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.307-314
    • /
    • 2018
  • In this study, NMO (Natural Manganese Ore), $MnO_2$, and $Mn_2O_3$ catalysts were used in the selective catalytic reduction process to remove nitrogen oxides (NOx) using $NH_3$ as a reducing agent at low temperatures in the presence of oxygen. In the case of the NMO (Natural Manganese Ore), it was confirmed that the conversion of nitrogen oxides in the stability test did not change even after 100 hours at 423 K. The Kinetics experiments were carried out within the range where heat and mass transfer were not factors. From a steady-state Kinetics study, it was found that the low-temperature SCR reaction was zero order with the respect to $NH_3$ and 0.41 ~ 0.57 order with the respect to NO and 0.13 ~ 0.26 order with the respect to $O_2$. As temperature increases, the reaction order decreases as a result of $NH_3$ and oxygen concentration. It was confirmed that the reaction between the $NH_3$ dissociated and adsorbedon the catalyst surface and the gaseous nitrogen monoxide (E-R model) and the reaction with the adsorbed nitrogen monoxide (L-H model) occur.

Manufacturing of Meat Flavor Extract used for Browning Reaction (Browning Reaction을 이용한 Meat Flavor Extract의 개발)

  • Kim Duk-Sook;Kim Jong-Seung
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.313-321
    • /
    • 2004
  • Separation-concentration of sulfur containing heterocyclic compounds(SCHC) from many reaction meat flavors manufactured with Maillard reaction was carried out. Profile of SCHC was identified and analyzed by GC and GC-MSD. The results were as follows. 1. Profile of SCHC could be identified 7 kinds thiazole and 11 kinds thiophene, the major produced compounds were thiophene, thiazolidine, 4-methyl-5-thiazole ethanol. 2. In the case of SCHC, relationship between changes of reaction conditions and the kind of produced components were as same, but produced amounts appeared the difference. Producing amount of complexed SCHC and caramellike note as well as oxygen containing heterocyclic compounds were high level more than high reaction temperature and long time reaction period. 3. Producing ratio of comparative simple structural SCHC were the highest level at reaction conditions of moisture content 50%, reaction temperature 100$^{\circ}C$ and reaction time 2 hours. Reaction conditions for the revelation of reaction meat flavor were below 110$^{\circ}C$ and less than 2 hours. 4. Relationship between moisture content and reaction temperature as well as reaction time had very relative relation. From the change of moisture content and reaction conditions could be obtained the simultaneously profile. Signal presentation for production of reaction meat flavor could be from extraction-separation-concentration of SCHC through simplification of raw-materials in the flavor and seasoning food industry.

Photo or Solar Ferrioxalate Disinfection Technology without External Hydrogen Peroxide Supply

  • Cho, Min;Jeong, Joon-Seon;Kim, Jae-Eun;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • v.12 no.5
    • /
    • pp.238-243
    • /
    • 2007
  • The Fenton reaction, which refers to the reaction between ferrous ions and hydrogen peroxide to produce the OH radical, has not been widely applied to the disinfection of microorganisms despite being economic and environmentally friendly. Cho et al. have previously proposed the neutral photo ferrioxalate system as a solution to the problems posed by the Fenton reaction in acidic conditions, but this system still requires an external hydrogen peroxide supply. In the present study, we developed a simple disinfection technology using the photo or solar ferrioxalate reaction without the need for an external hydrogen peroxide supply. E. coli was employed as the indicating microorganism. The study results demonstrated the effectiveness of the photo ferrioxalate system in inactivating E. coli without any external hydrogen peroxide supply, as long as dissolved oxygen is supplied. Furthermore, the solar ferrioxalate system achieved faster inactivation of E. coli than an artificial light source at similar irradiance.

Effect of Temperature and Reactants Flow Rate on the Synthesis Gas Production in a Fixed Bed Reactor (고정층 반응기에서 합성가스 생성에 미치는 반응온도와 반응물 유속의 영향)

  • Kim, Sang-Bum;Kim, Young-Kook;Hwang, Jae-Young;Kim, Myung-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2004
  • The effects of reaction temperature and flow rate of reactants on the methane conversion, product selectivity, product ratio, and carbon deposition were investigated with 13wt% Ni/MgO catalyst. Reaction temperatures were changed from 600 to $850^{\circ}C$, and reactants flow rates were changed from 100 to 200 mL/mim. There were no significant changes in the methane conversion observed in the range of temperatures used. It is possibly stemmed from the nearly total exhaustion of oxygen introduced. The selectiveties of hydrogen and carbon monoxide did not largely depend on the reaction temperature. The selectivities of hydrogen and carbon monoxide were 96 and 90%, respectively. Carbon deposition observed was the smallest at $750^{\circ}C$ and the largest at $850^{\circ}C$. It is found that the proper reaction temperature is $750^{\circ}C$. The best reactant flow rate was 150 ml/min.

Effects of Magnetite added with Metallic Oxide on the Decomposition Reaction of Carbon Dioxide (CO$_2$ 분해 반응에서 금속 산화물이 첨가된 $Fe_2O_4$의 영향)

  • Kim, Seung-Ho;Park, Young-Goo
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.32-37
    • /
    • 1998
  • The Carbon Dioxide is the gas, which causes green house effects, unusual changes in the weather, destruction of the life. Almost every nation in the world is trying to search the countermeasure to this poisonous gas. I synthesized $Fe_3O_4$ and NaOH, in order to decompose the Carbon Dioxide. Among the particles synthesizing $Fe_3O_4$, I chose the equivalent ratio 1.00 which can decompose the Carbon Dioxide best, and fixed that equivalent ratio and added the 0.005-3.00 mole percentage of NiCl$_2$ and synthesized $Fe_3O_4$. I studied the decomposition of the Carbon Dioxide and methanized reaction, by measuring its crystal structure, thermochemistrical character and specific surface area. In decomposing the Carbon Dioxide, I used oxygen-deficit Magnetite which I produced by injecting the hydrogen gas into the synthesized sample. I observed the methanization reaction by raising the temperature of sample up to 650$\circ$C and having it reacted with the hydrogen gas. The decomposition of the Carbon Dioxide was added 0.005, 0.03, 0.05 mole percentage of NiCl$_2$ was more effective than pure $Fe_3O_4$. All sample in which the decomposition of the Carbon Dioxide took place produced the methane gas.

  • PDF