• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,827, Processing Time 0.026 seconds

Recent advances in Studies of the Activity of Non-precious Metal Catalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지용 산소환원반응을 위한 비백금촉매의 활성에 대한 최신 연구 동향)

  • Yoon, Ho-Seok;Jung, Won Suk;Choe, Myeong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.90-96
    • /
    • 2020
  • Polymer electrolyte membrane fuel cells, which convert the chemical reaction energy of hydrogen into electric power directly, are a type of eco-friendly power for future vehicles. Due to the sluggish oxygen reduction reaction and costly Pt catalyst in the cathode, the research related to the replacement of Pt-based catalysts has been vitally carried out. In this case, however, the performance is significantly different from each other and a variety of factors have existed. In this review paper, we rearrange and summarize relevant papers published within 5 years approximately. The selection of precursors, synthesis method, and co-catalyst are represented as a core factor, while the necessity of research for the further enhancement of activity may be raised. It can be anticipated to contribute to the replacement of precious metal catalysts in the various fields of study. The final objective of the future research is depicted in detail.

Preparation of Shape-Controlled Palladium Nanoparticles for Electrocatalysts and Their Performance Evaluation for Oxygen Reduction Reaction (연료전지 전극촉매용 팔라듐 나노입자 형상 제어 및 산소환원반응 성능 평가)

  • KIM, KYOUNG-HEE;LEE, JUNG-DON;LEE, HYOJUNE;PARK, SEOK-HEE;YIM, SUNG-DAE;JUNG, NAMGEE;PARK, GU-GON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2018
  • To design the practical core-shell electrocatalysts, combination of core and shell materials is important to meet catalytic activity and durability target. In general, Pd is considered as a good core material due to its best activity caused by strain/ligand effect. Preparing Pd nanoparticles can be a starting point in fabricating core-shell type electrocatalysts, much simplified Pd preparing process is suggested by using carbon monoxide (CO) as a reducing agent and/or capping agent. The solvent composition and reaction temperature can control to nanosheet, tetrahedron, and sphere without using additional stabilizer. Among them, Pd nanosheet which has mainly (111) plane showed about 3 times higher electrocatalytic activity for oxygen reduction reaction (ORR) to the spherical Pd nanoparticles. The enhanced ORR activity of Pd nanosheets can be attributed to the exposure of Pd (111) surface and the high electrochemical surface area. Therefore, we demonstrated that the shape of Pd nanomaterials is easily controlled via a facile reduction method using CO, and (111) plane-oriented Pd nanosheets can be a promising ORR catalysts and core material for polymer electrolyte fuel cells (PEFCs).

Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis

  • Ban, Hee-Jung;Kim, Min Young;Kim, Dahye;Lim, Jinsub;Kim, Tae Won;Jeong, Chaehwan;Kim, Yoong-Ahm;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • To maximize the oxygen evolution reaction (OER) in the electrolysis of water, nano-grade $IrO_2$ powder with a low specific surface was prepared as a catalyst for a solid polymer electrolyte (SPE) system, and a membrane electrode assembly (MEA) was prepared with a catalyst loading as low as $2mg\;cm^{-2}$ or less. The $IrO_2$ catalyst was composed of heterogeneous particles with particle sizes ranging from 20 to 70 nm, having a specific surface area of $3.8m^2g^{-1}$. The anode catalyst layer of about $5{\mu}m$ thickness was coated on the membrane (Nafion 117) for the MEA by the decal method. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) confirmed strong adhesion at the interface between the membrane and the catalyst electrode. Although the loading of the $IrO_2$ catalyst was as low as $1.1-1.7mg\;cm^{-2}$, the SPE cell delivered a voltage of 1.88-1.93 V at a current density of $1A\;cm^{-2}$ and operating temperature of $80^{\circ}C$. That is, it was observed that the over-potential of the cell for the oxygen evolution reaction (OER) decreased with increasing $IrO_2$ catalyst loading. The electrochemical stability of the MEA was investigated in the electrolysis of water at a current density of $1A\;cm^{-2}$ for a short time. A voltage of ~2.0 V was maintained without any remarkable deterioration of the MEA characteristics.

Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction (중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용)

  • Yoonmo Koo;Youngbin Lee;Kyungmin Im;Jinsoo Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.180-185
    • /
    • 2023
  • To improve the efficiency of water electrolysis, it is essential to develop an oxygen evolution reaction (OER) electrocatalyst with high performance and long-term stability, accelerating the reaction rate of OER. In this study, a hollow metal-organic framework (MOF)-derived ruthenium-cobalt oxide catalyst was developed to synthesize an efficient OER electrocatalyst. As the synthesized catalyst increases the surface exposure of ruthenium, a low overpotential (386 mV) was observed at a current density of 10 mA/cm2 with a low Tafel slope. It is expected to be able to replace noble metal catalysts by showing higher mass activity and stability than commercial RuO2 catalysts.

Effect of NADH-Dependent Enzymes Related to Oxygen Metabolism on Elimination of Oxygen-Stress of Bifidobacteria (NADH요구 산소대사관련 효소가 bifidobacteria의 산소스트레스 제거에 미치는 영향)

  • Ahn, Jun-Bae;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.951-956
    • /
    • 2005
  • Selection of oxygen-tolerant strains and elucidation of their oxygen tolerance mechanism were crucial for effective use of bifidobacteria. Oxygen-tolerant bifidobacteria were able to significantly remove environmental oxygen (oxygen removal activity) as compared to oxygen-sensitive strains. Most oxygen removal activity was inhibited by heat treatment and exposure to extreme pH (2.0) of bifidobacterial cell. NADH oxidase was major enzyme related to oxygen removal activity. Oxygen-tolerant bifidobacteria possessed high NADH peroxidase activity level to detoxify $H_2O_2$ formed from reaction of NADH oxidase. Addition of oxygen to anaerobic culture broth significantly increased activities of HADH oxidase and NADH peroxidase within 1hr and rapid increment of oxygen concentration was prevented. Results showed NADH oxidase and NADH peroxidase of oxygen-tolerant bifidobacteria played important roles in elimination of oxygen and oxygen metabolite $(H_2O_2)$.

Effect of Zine Oxide Size and Oxygen Pressure on the Magnetic Properties of (Ni, Zn) Ferrite Powders Prepared by Self-propagating High Temperature Synthesis (ZnO의 입도와 산소압이 고온연소합성법으로 제조된 Ni-Zn Ferrite 분말의 자기적 특성에 미치는 영향)

  • Choi, Yong;Cho, Nam-Ihn;Hahn, Y.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.78-84
    • /
    • 1999
  • $(Ni, Zn)Fe_2O_4$ powders were prepared through self-propagating high temperature synthesis reaction and the effects of initial zinc oxide powder size and oxygen pressure on the magnetic properties of the final combustion products were studied. The ferrite powders were combustion synthesized with iron, iron oxide, nickel oxide, and zinc oxide powders under various oxygen pressures of 0.5~10 atmosphere after blended in n-hexane solution for 5 minutes with a spex mill, followed by dried at 120 $^{\circ}C$ in vacuum for 24 hours. The maximum combustion temperature and propagating rate were about 1250 $^{\circ}C$ and 9.8 mm/sec under the tap density, which were decreased with decreasing ZnO size and oxygen pressure. The final product had porous microstructure with spinel peaks in X-ray spectra. As the ZnO particle size in the reactant powders and oxygen pressure during the combustion reaction increase, coercive force, maximum magnetization, residual magnetization, squareness ratio were changed from 1324 Oe, 43.88 emu/g, 1.27 emu/g, 0.00034 emu/gOe, 37.8$^{\circ}C$ to 11.83 Oe, 68.87 emu/g, 1.23 emu/g, 0.00280 emu/gOe, 43.9 $^{\circ}C$ and 7.99 Oe, 75.84 emu/g, 0.791 emu/g, 0.001937 emu/gOe, 53.8 $^{\circ}C$ respectively. Considering the apparent activation energy changes with oxygen pressure, the combustion reaction significantly depended on initial oxygen pressure and ZnO particle size.

  • PDF

Dissolved Oxygen Removal in a Column Packed with Catalyst

  • Lee, Han-Soo;Hongsuk Chung;Cho, Young-Hyun;Ahn, Do-Hee;Kim, Eun-Kee
    • Nuclear Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.482-487
    • /
    • 1996
  • The dissolved oxygen removal by H$_2$-O$_2$ reaction in column packed with various catalysts wes examined. The catalysts employed were the prepared polymeric catalyst platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feed water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removal of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst.

  • PDF

The Wallach Rearrangement The Behaviour of Monosubstituted Azoxybenzenes in Strongly Acidic Solution (强酸溶液中에서의 Azoxybenzene 系化合物들의 轉移反應. Wallach 轉移反應)

  • Hahn, Chi-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.162-170
    • /
    • 1962
  • The rearrangement reaction of azoxybenzenes into hydroxyazobenzenes in strongly acidic solution has been studied by an U. V. spectrophotometric method and by isolation of the rearranged compound. In all cases under investigation, it appeared that the oxygen atom in the azoxy group migrated to the unsubstituted ring, depending neither on the substituent already present in the other ring, nor on the distance between the oxygen atom and the eligible position; whereas, the position in the open ring, ortho or para, to which the oxygen migrates depends on the substituent already present in the other ring. In all compounds besides ${\alpha}$-and ${\beta}$-4-methyl azoxybenzene, the oxygen atom migrates to the para position. In the case of ${\alpha}$ and ${\beta}$-4-methylazoxybenzene, the oxygen atom migrates to the ortho position of the unsubstituted ring.

  • PDF

Oxidative Stress Resulting from Environmental Pollutions and Defence Mechanisms in Plants (환경오염(環境汚染)에 의한 산화(酸化)스트레스와 식물체(植物體)의 방어기작(防禦機作))

  • Shim, Sang-In;Kang, Byeung-Hoa
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.264-280
    • /
    • 1993
  • The environmental pollutions were a serious problem in Korea recently. So many researcher have studied the effect of environmental pollution on plants and agro-ecosystem, but the basic mechanisms of environmental stresses were various. One of the important mechanisms was oxidative stress caused by active toxic oxygen. The toxic oxygen was generated by several stresses, abnormal temperature, many xenobiotics, air pollutants, water stress, fugal toxin, etc. In the species of toxic oxygen which is primary inducer of oxidative stresses, superoxide, hydrogen peroxide, hydroxyl radical and singlet oxygen were representative species. The scavenging systems were divided into two groups. One was nonenzymatic system and the other enzymatic system. Antioxidants such as glutathione, ascorbic acid, and carotenoid, have the primary function in defense mechanisms. Enzymatic system divided into two groups; First, direct interaction with toxic oxygen(eg. superoxide dismutase). Second, participation in redox reaction to maintain the active antioxidant levels(eg. glutathione reductase, ascorbate peroxidase, etc.).

  • PDF

Characteristic of Oxidation Reaction of Lanthanide Chlorides in Oxygen-Eutectic Salt Bubble Column (산소-공융염 기포탑에서 희토류염화물의 산화반응 특성)

  • Cho, Yung-Zun;Yang, Hee-Chul;Lee, Han-Soo;Kim, In-Tae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.465-469
    • /
    • 2009
  • Characteristics of oxidation reaction of four lanthanide chlorides(Ce, Nd, Pr and $EuCl_3$) in a oxygen-eutectic(LiCl-KCl) salt bubble column was investigated. From the results obtained from the thermochemical calculations by HSC chemistry software, the most stable lanthanide compounds in the oxygen-used rare earth chlorides system were oxychlorides(EuOCl, NdOCl, PrOCl) and oxides($CeO_2$, $PrO_2$), which coincide well with results of the Gibbs free energy of the reaction. In this study, similar to the thermochemical results, regardless of the sparging time and molten salt temperature, oxychlorides for Eu, Nd and Pr and oxides for Ce and Pr were formed as a precipitant by a reaction with oxygen. The structure of the rare earth precipitates was divided into two shapes : small cubic(oxide) and large tetragonal (oxychloride) structures. The conversion efficiencies of the lanthanide elements to their molten salt-insoluble precipitates(or compound) were increased with the sparging time and temperature, and Ce showed the best reactivity. In the conditions of $650^{\circ}C$ of the molten salt temperature and 420 min of the sparging time, the conversion efficiencies were over 99% for all the investigated lanthanide chlorides.