• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,820, Processing Time 0.033 seconds

Life Time Prediction and Physical Properties of Chloroprene Rubber Aged by Seawater (클로로프렌 고무의 해수에 의한 물성 변화 및 노화 수명 예측)

  • Lee, Chan Koo;Yun, Ju Ho;Kim, Il;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.9-17
    • /
    • 2012
  • Herein, life time prediction based on the deterioration of physical properties of chloroprene rubber (CR)aged by heat and seawater was performed. CR samples were experienced an accelerated test at $80^{\circ}C$, $100^{\circ}C$, $120^{\circ}C$ for heat aging, and $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ for seawater aging for 20,000 hrs. The change in tensile strength, maximum elongation,hardness was measured. As a result, the decrease in elongation was a major factor causing failure. The life time estimated using an Arrhenius model was 125 years at $23^{\circ}C$ for thermal aging and 9 years at $23^{\circ}C$ for seawater aging. SEM and elemental analysis reveal that cracks were generated and the content of oxygen was increased for CR agined by seawater. FT-IR spectrum shows the new C-O and C = O bonds were generated by the chemical reaction with seawater. Also, the glass transtion temperature was increased and the thermal decomposition was decreased by seawater aging.

Control Indian meal moth Plodia interpunctella by gas treatment

  • Han, Gyung Deok;Kwon, Hyeok;Jin, Hyun Jung;Kum, Ho Jung;Kim, Bo Hwan;Kim, Wook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.45-45
    • /
    • 2017
  • The Indian meal moth, Plodia interpunctella, is one of the most important pests of stored food in the food processing industry worldwide. To control the Indian meal moth, methyl bromide, phosphine, high carbon dioxide, sulfuryl fluoride and plant essential oil fumigation have been considered. However, these treatments have disadvantages. For example, depleting the ozone layer, showing resistance in insect, low control efficacy or need high cost for treatment. Chlorine dioxide ($ClO_2$) is strong disinfectant and insecticide. The gas caused a malfunction in enzymes. The oxidative stress induced by $ClO_2$ gas treatment damaged to a physiological system and all life stages of P. interpunctella. The gaseous $ClO_2$ is a convincing alternative to methyl bromide for controlling P. interpunctella. The gaseous $ClO_2$ was generated by a chlorine dioxide generator (PurgoFarm Co., Ltd., Hwasung, Korea). It generated highly pure $ClO_2$ gas and the gas blown out through a vent into a test chamber. Gas entry to the chamber was automatically controlled and monitored by a PortaSene II gas leak detector (Analytical Technology, Collegeville, PA, USA). The properly prepared eggs, larvae, pupae, and adults of P. interpunctella were used in this experiment. Data were analyzed using SAS 9.4. Percentage data were statistically analyzed after arcsine-root transformation. Analysis of variance was performed using general linear model, and means were separated by the least significant difference test at P < 0.05. Fumigation is an effective management technique for controlling all stages of P. interpunctella. We found that $ClO_2$ gas treatment directly effects on egg, larvae, pupae and adults of P. interpunctella. The gas treatment with proper concentration for over a day achieved 100 % mortality in all stages of P. interpunctella and short time treatment or low concentration gas treatment results showed that the egg hatchability, pupation rate, and adult emergency rate were lowered compare with untreated control. Also, abnormal pupae or adult rate were increased. Gaseous $ClO_2$ treatment induced insecticidal reactive oxygen species (ROS), and it resulted in fatal oxidative stress in P. interpunctella. Taken together, these results showed that exposure proper concentration and time of the gas control all stages of P. interpunctella by inducing fatal oxidative stress. Further studies will be required to apply the gas treatment under real-world condition and to understanding physiological reaction in P. interpunctella caused by oxidative stress.

  • PDF

Partial Oxidation of Methane to Syngas over M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) Catalysts (M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) 촉매상에서 합성가스 제조를 위한 메탄의 부분산화반응)

  • Seo, Ho Joon;Kim, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.720-725
    • /
    • 2017
  • M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) catalysts were prepared for the partial oxidation of methane (POM) to syngas. The catalysts were characterized by BET, TEM, and XPS. The BET-specific surface area and average pore size for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) were 538.8, 504.3, and $447.3m^2/g$ and 6.4, 6.8, and 7.1 nm, respectively. TEM results showed that the mesoporous hexagonol structure was formed for SBA-15, while the homogeneous dispersion of Ni and Ce particles on the surface was formed for Ce(10)-Ni(5)/SBA-15 caused by the confinment effect of SBA-15. XPS data confirmed that $Ce^{4+}$ and $Ce^{3+}$ on the surface catalyst have two oxidation states due to the lattice oxygen species ($O^{2-}$, $O^-$). The yields of POM to syngas over Ce(10)-Ni(5)/SBA-15 were 52.9% $H_2$ and 21.7% CO at 1 atm, 973 K, $CH_4/O_2=2$, $GHSV=1.08{\times}10^5mL/g_{cat.}{\cdot}h$, and these values were kept constant even after 75 h on streams. The same tendency of syngas yields was observed for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm). These results confirm that the redox reaction of promoters including Ce, Nd, and Sm enhanced the stability and yield of catalysts.

Impacts of Elevated $CO_2$ on Algal Growth, $CH_4$ Oxidation and $N_2O$ Production in Northern Peatland (이탄습지에서 이산화탄소의 농도가 조류의 증식, 메탄 산화 및 아산화질소 생성에 미치는 영향)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.261-266
    • /
    • 2001
  • Effects of elevated carbon dioxide ($CO_2$) on soil microbial processes were studied in a northern peatland. Intact peat cores with surface vegetation were collected from a northern Welsh fen, and incubated either under elevated carbon dioxide (700 ppm) or ambient carbon dioxide (350 ppm) conditions for 4 months. Higher algal biomass was found under the elevated $CO_2$ condition, suggesting $CO_2$ fertilization effect on primary production, At the end of the incubation, trace gas production and consumption were analyzed using chemical inhibitors. For methane ($CH_4$ ), methyl fluoride ($CH_3F$) was applied to determine methane oxidation rates, while acetylene ($C_2H_2$) blocking method were applied to determine nitrification and denitrification rates. First, we have adopted those methods to optimize the reaction conditions for the wetland samples. Secondly, the methods were applied to the samples incubated under two levels of $CO_2$. The results exhibited that elevated carbon dioxide increased both methane production (210 vs. $100\;ng\;CH_4 g^{-1}\;hr^{-1}$) and oxidation (128 vs. $15\;ng\;CH_4 g^{-1}\;hr^{-1}$), resulting in no net increase in methane flux. For nitrous oxide ($N_2O$) , elevated carbon dioxide enhanced nitrous oxide emission probably from activation of nitrification process rather than denitrification rates. All of these changes seemed to be substantially influenced by higher oxygen diffusion from enhanced algal productivity under elevated $CO_2$.

  • PDF

A Study of Cold Flow Characteristics of a Flue Gas Recirculation Burner using Coanda Nozzles (코안다 노즐을 이용한 배기가스 재순환 버너의 냉간 유동 특성에 관한 연구)

  • Ha, Ji Soo;Park, Chan Hyuk;Shim, Sung Hun;Jung, Sang Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.152-158
    • /
    • 2016
  • Nitrogen oxide is generated by the chemical reaction of oxygen and nitrogen in higher temperature environment of combustion facilities. The NOx reduction equipment is generally used in the power plant or incineration plant and it causes enormous cost for the construction and maintenance. The flue gas recirculation method is commonly adopted for the reduction of NOx formation in the combustion facilities. In the present study, the computational fluid dynamic analysis was accomplished to elucidated the cold flow characteristics in the flue gas recirculation burner with coanda nozzles in the flue gas recirculation pipe. The inlet and outlet of flue gas recirculation pipes are directed toward the tangential direction of circular burner not toward the center of burner. The swirling flow is formed in the burner and it causes the reverse flow in the burner. The ratio of flue gas recirculation flow rate with the air flow rate was about 2.5 for the case with the coanda nozzle gap, 0.5mm and it was 1.5 for the case with the gap, 1.0mm. With the same coanda nozzle gap, the flue gas recirculation flow rate ratio had a little increase when the air flow rate changes from 1.1 to 2.2 times of ideal air flow rate.

The Effect of Temperature on the Breakthrough of Charcoal Tube During Vinyl Chloride Monomer Sampling (공기중 염화비닐단량체 포집시 온도가 파과현상에 미치는 영향)

  • Park, Youn Jung;Lee, Sang Hoi;Kim, Chi Nyon;Won, Jong Uk;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.115-123
    • /
    • 1998
  • Vinyl chloride monomer exists as gas phase at normal temperature and reacts with oxygen and strong oxidant in the air to form oxidized materials. Because of being easily synthesized, it is used as a main source at the synthetic reaction process of PVC synthesis factories. Ministry of Labor regulates its usage as a carcinogen and its exposure level as 1 ppm. But the amount of VCM production in PVC and VCM production process hasn't been exactly estimated. In addition, facilities of this factory are located in outdoor. Therefore, this study was designed to investigate effects of temperature on breakthrough of charcoal tube at a fixed concentration and temperature during VCM sampling based on NIOSH and OSHA methods which were used as methods of occupational environment measuring and analysis. During the sampling of VCM, methods of OSHA and NIOSH require flow rate of 0.05 lpm and sampling volume of $3{\ell}$, $5{\ell}$ respectively, at this time carbon molecular sieve tube and coconut shell charcoal tube are used to observe the breakthrough along with concentration and temperature. As a result, significant difference between average adsorbed amounts of OSHA methods but that of NIOSH methods cannot be found. NIOSH method is likely to be effected by high temperature and normal temperature in high concentration. Breakthrough is not found in the method of OSHA at different conditions of temperature and concentration. As the result of this study we could verify that breakthrough occurred in the process of sampling VCM with NIOSH methods. Therefor in summer time, breakthrough should be considered and research on the breakthrough volume should be done. It is considered the research about the specificity of the coconut shell charcoal and carbon molecular sieve sorbent should be done when sampling VCM in comming days.

  • PDF

Characteristics on the Removal of Emulsified Vegetable Oil in Wastewater using Bio logical Fluidized Bed (생물학적(生物學的) 유동층(流動層)을 이용(利用)한 수중(水中)의 식물성유(植物性油) 제거특성(除去特性))

  • Kim, Hwan Gi;Park, Ro Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.127-136
    • /
    • 1990
  • In this paper, the experimental study was carried out for the removal of olive oil in wastewater by the use of Biological Fluidized Bed(BFB) with the reticulated polypropylene sheets as media. The nonbiodegradable olive oil, one of the animal and vegitable oil, was used bacause of the relative simplicity of constitution. Biological degraciability and removal characteristics of emulsified olive oil were studied by batch and continuous experiments respectively. From the results of batch experiments, it was observed that the emulsified olive oli used in BFB reactor was absorbed by media and sludge in about 12 hours, and degradation of the absorbed olive oli was mostly completed for 24 hours. The functional relationship of Michaelis-Menten's Enzyme reaction equation exists between oil concentration and maximum specific rate of olive oil. From the continuous experiments for the removal of olive oil using BFB reactor, it was proved that the substrate removal rate coefficient $k=0.004d^{-1}$, which is the first order kinetics. It was apperared that oxygen utlization coefficients for synthesis(a') and endogeneous respiration(b') of microorganisms in the reactor are respectively 0.85mg $O_2/mg$ $COD_{cr}$ and 0.011mg $O_2/mg$ BVS. day.

  • PDF

Treatment of Synthetic Wastewater by Indirect Aerating Biofilter Submerged Gravel (잔자갈을 충전(充塡)한 간접폭기방식(間接曝氣方式) 침지여상(浸漬濾床)에 의한 합성하수처리(合成下水處理))

  • Yang, Sang Hyon;Won, Chan Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.129-138
    • /
    • 1988
  • In order to develop the design and operational criteria in sewage treatment by indirect aerating submerged biofilter, experimental investigations were performed for the reasonable oxygen supply and effecting factors of treatment efficiency. The experiments were executed for the up-flowing synthetic wastewater and aerated water in the submerged biofilter at $20^{\circ}C$. The obtained results are as follows: 1) Appropriate mean diameter of gravels was about 11mm. 2) $BOD_5$ loading rate based on biofilter volume was more reasonable than that on surface area of gravel for operational criteria. 3) To remove the influent $BOD_5$ more than 90%, $BOD_5$ loading rate must be less than $1.0kg-BOD_5/m^3{\cdot}d$ and circulating flowrate must be more than $189m^3/m^3{\cdot}d$. 4) Reaction rate coefficient $K_1$ is related to diameter of gravel and circulating flow rate based on biofilter volume.

  • PDF

Phospholipase $A_2$ excreted from the cells of hyperthermophilic microbes (초호열성균이 생성하는 phospholipase $A_2$에 관한 연구)

  • Joh, Yong-Goe;Woo, Hyo-Kyeng;Kim, Yeon-Sim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.263-271
    • /
    • 1999
  • We checked the presence of phospholipase $A_2(PLA)_2$ which could split the ester bond at the position 2 in the glycerol backbone of glycerophospholipids, in the cells of hyperthermophiles of Pyrococcus horikoshii and Sulfolobus acidocaldarius. The results obtained are as follows; (1). Pyrococcus horikoshii cells were grown in obligate anaerobic conditions at $95^{\circ}C$ and they needed sulfur as energy source instead of oxygen, while Sulfolobus acidocaldarius species grew well in the aerobic medium (pH 2.5) containing yeast and sucrose at $75^{\circ}C$. (2). Pyrococcus horikoshii cells produced phospholipase $A_2$ in the cell culture media although this species did not show lipase activity at least in the pH range of 1.5 ${\sim}$ 3.5. Sulfolobus acidocaldarius cells produced lipase hydrolyzing triacylglycerols such as triolein, but did not split any kind of phospholipids used as substates. (3). The compound of 1-decanoyl-2-(p-nitrophenylglutaryl) phosphatidylcholine was not suitable for a substrate in this experiment, though frequently used as a subtrate for checking presence of phospholipase $A_2$, for its decomposi-tion in this experiment. The L-${\alpha}$-phosphatidylcholine-${\beta}$-[N-7-nitrobenz-2-oxa-1, 3-diazol]aminohexanoyl-${\gamma}$-hexadecanoyl labelled with a fluorescent material, did not show any migration of acyl chains in the molecule during the reaction with phospholipase $A_2$ under a hot condition. (4). Phospholipase $A_2$ in the cells of Pyrococcus horikoshii, showed the optimum activity at $pH6.7{\sim}7.2$ and $95{\sim}105^{\circ}C$, respectively, and was activated by addition of calcium chloride solution. Andthe phospholipase $A_2$ specifically hydrolyzed glycero-phospholipids such as phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and phosphatidyl inositol, but could not split phospholipid containing ether bonds in the molecule such as DL -${\alpha}$-phosphatidylcholine-${\beta}$-palmitoyl-${\gamma}$-O-hexadecyl, DL-${\alpha}$-phosphati- dylcholine-${\beta}$- oleoyl-${\gamma}$-O-hexadecyl, DL-phosphatidylcholine-dihexadecyl.

Association of DNA Base-excision Repair XRCC1, OGG1 and APE1 Gene Polymorphisms with Nasopharyngeal Carcinoma Susceptibility in a Chinese Population

  • Li, Qing;Wang, Jian-Min;Peng, Yu;Zhang, Shi-Heng;Ren, Tao;Luo, Hao;Cheng, Yi;Wang, Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5145-5151
    • /
    • 2013
  • Background: Numerous carcinogens and reactive oxygen species (ROS) may cause DNA damage including oxidative base lesions that lead to risk of nasopharyngeal carcinoma. Genetic susceptibility has been reported to play a key role in the development of this disease. The base excision repair (BER) pathway can effectively remove oxidative lesions, maintaining genomic stability and normal expression, with X-ray repair crosscomplementing1 (XRCC1), 8-oxoguanine glycosylase-1 (OGG1) and apurinic/apyimidinic endonuclease 1 (APE1) playing important roles. Aims: To analyze polymorphisms of DNA BER genes (OOG1, XRCC1 and APE1) and explore their associations, and the combined effects of these variants, with risk of nasopharyngeal carcinoma. Materials and Methods: We detected SNPs of XRCC1 (Arg399Gln), OGG1 (Ser326Cys), APE1 (Asp148Glu and -141T/G) using the polymerase chain reaction (PCR) with peripheral blood samples from 231 patients with NPC and 300 healthy people, furtherly analyzing their relations with the risk of NPC in multivariate logistic regression models. Results: After adjustment for sex and age, individuals with the XRCC1 399Gln/Gln (OR=1.96; 95%CI:1.02-3.78; p=0.04) and Arg/Gln (OR=1.87; 95%CI:1.29-2.71; p=0.001) genotype variants demonstrated a significantly increased risk of nasopharyngeal carcinoma compared with those having the wild-type Arg/Arg genotype. APE1-141G/G was associated with a significantly reduced risk of NPC (OR=0.40;95%CI:0.18-0.89) in the smoking group. The OR calculated for the combination of XRCC1 399Gln and APE1 148Gln, two homozygous variants, was significantly additive for all cases (OR=2.09; 95% CI: 1.27-3.47; p=0.004). Conclusion: This is the first study to focus on the association between DNA base-excision repair genes (XRCC1, OGG1 and APE1) polymorphism and NPC risk. The XRCC1 Arg399Gln variant genotype is associated with an increased risk of NPC. APE1-141G/G may decrease risk of NPC in current smokers. The combined effects of polymorphisms within BER genes of XRCC1 399Gln and APE1 148Gln may contribute to a high risk of nasopharyngeal carcinoma.