• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,820, Processing Time 0.026 seconds

Change of Solubilization Characteristics of Rice Straw by Different Pre-treatments (전처리 방법에 따른 볏짚의 가용화 특성 변화)

  • Hong, Seung-Gil;Shin, JoungDu;Heo, Jeong-Wook;Park, Woo-Kyun;Kwon, Soon-Ik;Park, Noh-Back;Shin, Hyun-Seon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.1
    • /
    • pp.71-77
    • /
    • 2012
  • In order to find a feasibility of applying an agricultural biomass to the anaerobic digestion system, the effects of pre-treatment of rice straw was investigated by different sizes,temperatures, ultrasonic frequencies, and with/without NaOH treatment on the change of soluble organic matter, which is generated most dominantly in Korea. It was observed that SCOD(soluble chemical oxygen demand) as the index for the decomposition of rice straw increased with the smaller particle size, higher reaction temperature and alkali treatment. With treatment of 5% NaOH, it was shown that the highest concentrations of SCOD were observed at 9,000 mg $L^{-1}$ and 6,000mg $L^{-1}$ at $35^{\circ}C$ and $55^{\circ}C$, respectively. Agitating with ultrasonic irradiation could be enhanced SCOD of rice straw less than 3 cm with 40 kHz of ultrasound. Optimal RPM in this study was at 150 rpm regardless of reaction temperatures.

Mutagenicities of Carbonyl Compounds Derived from Maillard Reaction and their Desmutagenicity Mechanisms (Maillard 반응 유래(由來) 저분자 카르보닐화합물의 돌연변이원성과 그 억제기구)

  • Kim, Seon-Bong;Yeom, Dong-Min;Do, Jeong-Ryong;Yoon, Hyeung-Sik;Byun, Han-Seok;Kim, In-Soo;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.435-440
    • /
    • 1989
  • The present study was attempted to investigate the mutagenicities of carbonyl compounds(methyl glyoxal, glyoxal, diacetyl, dihydroxyacetone, glycolaldehyde, glyceraldehyde and furfural) derived from Maillard reaction toward Salmonella typhimurium TA 100(base-substitution mutant) without metabolic activation . And for further Investigation of mutagenicity mechanism including desmutagenicity, active oxygen scavengers (cysteine, ${\alpha}-tocopherol$, tris (hydroxymethyl) aminomethane, catalase, ascorbic acid) and reducing agents (glutathione, sodium bisulfite) were also used. Among carbonyl compounds tested, methyl glyoxal, glyoxal, dihydroxyacetone, glycolaldehyde and glyceraldehyde exhibited mutagenicities, and methyl glyoxal showed the strongest mutagenic activity. On the other hand , the mutagenicities of carbonyl compounds were significantly suppressed by cysteine, tris (hydroxymethyl) aminomethane, glutathione and sodium bisulfite. Also, these active oxygen scavengers and reducing agents alone did not show mutagenicity in the present study.

  • PDF

A Study on the Leaching of Heavy Metals by Municipal Solid Waste Landfill Leachate (폐기물 매립지 침출수에 의한 중금속 용출에 관한 연구)

  • Jung, Jong-Gwan;Jang, Won;Park, Young-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.1
    • /
    • pp.105-110
    • /
    • 1997
  • Sanitary landfill is a general method as a final disposal of municipal solid waste(MSW), therefore leachate characteristics are very various as lime goes by because of highly concentrated organic acids are contained non biodegradable COD. So it is hard to abide by the mandatory standards of discharge eventhough applying the physicochemical and biological processes to treat the leachate. The process of treating leachate are determined by the degree of removal and components, but they are highly contained organic materials. It is a removal method to use jointly with the physicochemical process if the hard and fast rule is needed. The critical components of material are COD, ammonia, salts and heavy metals in the case of treating biologically. Biological process is to use metabolism of microorganism, therefore it is a desirable condition which heavy metals are not contained, because they acting as an inhibitor of enzyme. Of these are contained, organic decomposition and synthetic function of microorganisms decrease significantly. Consequently, this research paper lays emphasis on the concentration of heavy metals in leachate and for the purpose of forecasting the factors which are affecting the leaching of metalic waste in some degree, experimented the various reacting conditions. 1. When the concentration of heavy metals in leachate is in comparison with the level eluted after reaction, at pH 7.9 the result of reaction for PCB to CCL scrap showed that Zn, Mn, Cu was more eluted 11.6 times, 340.3 times, and 2,705.5 times respectively than the leachate undiluted solution. 2. At the condition of strong acid pH 4.7, the concentration of heavy metals in EM undiluted solution showed that Zn, Mn, Cu was more eluted 26.5 times, 147.3 times, and 3,656.3 times respectively than leachate undiluted solution. 3. When the ratio leachate to EM was 50 vs 50(V/V%), Mn was more eluted 198.7 times than leachate undiluted solution, but Zn and Cu do not show the meaningful results. 4. The color of landfill leachate was black-brown. And fulvic acid that is main ingredient of NBD COD contained, oxygen of 44~50%. For that reason, I estimated that the level of Zn, Mn, Cu was higher than the case of leachate. 5. COD of leachate from general landfill is difficult to remove. Because the solution of heavy metals is improved by the character of leachate(pH & ingredient of oxygen etc.) hence the Mn, Cu, Zn act as disturbing factor, the biochemical treatment is hard. Therefore the type of PCB & CCL scrap, iron, aluminum contained metals need to previously separate from general wastes as much as possible.

  • PDF

A Study of the Formation of Carbon Monoxide in the Combustion of Anthracite Holed Briquettes (연탄이 연소할 때에 생성되는 일산화탄소에 대한 연구)

  • Han, Dong-Chin
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.150-158
    • /
    • 1967
  • When anthracite burns by natural draft the mole percent of carbon monoxide (CO%) contained in exhaust gas is approximately expressed as follows in the early stage of combustion. (CO%)=$\frac{2{\alpha}}{1+{\alpha}}(CO_2%)$ exp $[-\vec{k}(No_2-Nc)^{1/2}{\tau}]$ where ${\alpha}=\frac{-0.395K_p+\sqrt{0.156K^2_p+(0.83+0.21K_p)K_p}}{0.83+0.21K_p}$ and $logK_p =-\frac{8593}{T} + 2.45logT -1.08{\times}10^{-3}T + 1.12{\times}10^{-7}T^2+2.77\vec{k},\;No_2$ and $N_c$ are the rate constant for the reaction ($CO+\frac{1}{2}O_2{\to}CO_2$), mole fraction of oxygen and oxides of carbon contained in the exhaust gas, respectively. From experimental evidence obtained in this work with natural draft combustion of briquettes the percent of carbon monoxide to the total quantity of oxides of carbon produced and rate of air flow into the furnace were: 1.76% and 0.53 l/sec (When lid is used in the furnace) 12.35% and 2.4 l/sec (without use of a lid). is the rate constant for the reaction($CO+\frac{1}{2}O_2{\to}CO_2$) and $N_0,\;and\;N_c$ are respectively the molefraction of oxygen and oxide of carbon contained in the exhaust gas.

  • PDF

A Chemical Reaction Calculation and a Semi-Empirical Model for the Dynamic Simulation of an Electrolytic Reduction of Spent Oxide Fuels (산화물 사용후핵연료 전해환원 화학 반응 계산 및 동적 모사를 위한 반실험 모델)

  • Park, Byung-Heung;Hur, Jin-Mok;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.19-32
    • /
    • 2010
  • Electrolytic reduction technology is essential for the purpose of adopting pyroprocessing into spent oxide fuel as an alternative option in a back-end fuel cycle. Spent fuel consists of various metal oxides, and each metal oxide releases an oxygen element depending on its chemical characteristic during the electrolytic reduction process. In the present work, an electrolytic reduction behavior was estimated for voloxidized spent fuel based on the assumption that each metal-oxygen system is independent and behaves as an ideal solid solution. The electrolytic reduction was considered as a combination of a Li recovery and chemical reactions between the metal oxides such as uranium oxide and the produced Li metal. The calculated result revealed that most of the metal oxides were reduced by the process. It was evaluated that a reduced fraction of lanthanide oxides increased with a decreasing $Li_2O$ concentration. However, most of the lanthanides were expected to be stable in their oxide forms. In addition, a semi-empirical model for describing $U_3O_8$ electrolytic reduction behavior was proposed by considering Li diffusion and a chemical reaction between $U_3O_8$ and Li. Experimental data was used to determine model parameters and, then, the model was applied to calculate the reduction yield with time and to estimate the required time for a 99.9% reduction.

Experimental Study of Char Oxidation and Kinetic Rate in O2/CO2 and O2/N2 Environments (O2/CO2조건과 O2/N2조건에서의 촤 연소특성 및 산화 반응성에 관한 실험적 연구)

  • Kim, Song-Gon;Lee, Cheon-Seong;Lee, Byoung-Hwa;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1101-1109
    • /
    • 2010
  • We investigated the combustion rate and kinetic rate of char when burning in oxygen-enriched atmospheres with either an $N_2$ or $CO_2$ bath gas in a drop tube furnace. The experiments were performed with sub-bituminous coal (Adaro) and bituminous coal (Coal valley) under atmospheric pressure conditions. Two different coals were investigated over 12 to 30 vol% oxygen and furnace temperatures of 900, 1100, and $1300^{\circ}C$. For both coals, the particle temperature and overall reaction rate are lower in the $CO_2$ bath gas. However, analysis of single-particle data shows that the surface-specific burning rate of char oxidation is similar in both gases. In addition, the kinetic rate and activation energy for each coal were similar for both gases. Generally, the particle temperature and overall reaction rate of sub-bituminous coal are higher than those of bituminous coal.

Biological Inspiration toward Artificial Photostystem

  • Park, Jimin;Lee, Jung-Ho;Park, Yong-Sun;Jin, Kyoungsuk;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.91-91
    • /
    • 2013
  • Imagine a world where we could biomanufacture hybrid nanomaterials having atomic-scale resolution over functionality and architecture. Toward this vision, a fundamental challenge in materials science is how to design and synthesize protein-like material that can be fully self-assembled and exhibit information-specific process. In an ongoing effort to extend the fundamental understanding of protein structure to non-natural systems, we have designed a class of short peptides to fold like proteins and assemble into defined nanostructures. In this talk, I will talk about new strategies to drive the self-assembled structures designing sequence of peptide. I will also discuss about the specific interaction between proteins and inorganics that can be used for the development of new hybrid solar energy devices. Splitting water into hydrogen and oxygen is one of the promising pathways for solar to energy convertsion and storage system. The oxygen evolution reaction (OER) has been regarded as a major bottleneck in the overall water splitting process due to the slow transfer rate of four electrons and the high activation energy barrier for O-O bond formation. In nature, there is a water oxidation complex (WOC) in photosystem II (PSII) comprised of the earthabundant elements Mn and Ca. The WOC in photosystem II, in the form of a cubical CaMn4O5 cluster, efficiently catalyzes water oxidation under neutral conditions with extremely low overpotential (~160 mV) and a high TOF number. The cluster is stabilized by a surrounding redox-active peptide ligand, and undergo successive changes in oxidation state by PCET (proton-coupled electron transfer) reaction with the peptide ligand. It is fundamental challenge to achieve a level of structural complexity and functionality that rivals that seen in the cubane Mn4CaO5 cluster and surrounding peptide in nature. In this presentation, I will present a new strategy to mimic the natural photosystem. The approach is based on the atomically defined assembly based on the short redox-active peptide sequences. Additionally, I will show a newly identified manganese based compound that is very close to manganese clusters in photosystem II.

  • PDF

Thermodynamic Evaluations of Cesium Capturing Reaction in Ceramic Microcell UO2 Pellet for Accident-tolerant Fuel (사고저항성 핵연료용 세라믹 미소셀 UO2 소결체의 Cs 포집반응에 대한 열역학적 평가)

  • Jeon, Sang-Chae;Kim, Keon Sik;Kim, Dong-Joo;Kim, Dong Seok;Kim, Jong Hun;Yoon, Jihae;Yang, Jae Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • As candidates for accident-tolerant fuels, ceramic microcell fuels, which are distinguished by their peculiar microstructures, are being developed; these fuels have $UO_2$ grains surrounded by cell walls. They contribute to nuclear fuel safety by retention of fission products within the $UO_2$ pellet, reducing rod pressure and incidence of SCC failure. Cesium, a hazardous fission product in terms of amount and radioactivity, can be captured by chemical reactions with ceramic cell materials. The capture-ability of cesium therefore depends on the thermodynamics of the capturing reaction. Conversely, compositional design of cell materials should be based on thermodynamic predictions. This study proposes thermodynamic calculations to evaluate the cesium capture-ability of three ceramic microcell compositions: Si-Ti-O, Si-Cr-O and Si-Al-O. Prior to the calculations, the chemical and physical states of the cesium and the cell materials were defined. Then, the reactivity was evaluated by calculating the cesium potential (${\Delta}G_{Cs}$) and oxygen potential (${\Delta}G_{O_2}$) under simulated LWR circumstances of normal operation. Based on the results, cesium capture is expected to be spontaneous in all cell compositions, providing a basis for the compositional design of ceramic microcell fuels as well as a facile way for evaluating cesium capture.

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

Numerical Study on Ignition Delay Time of CH4 as CO/H2 Addition in MILD Combustion (MILD 연소 환경에서 CO/H2 첨가에 따른 CH4의 점화 지연 시간의 해석적 연구)

  • Kim, Donghee;Huh, Kang Y.;Lee, Youngjae
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.1-12
    • /
    • 2021
  • MILD(Moderate or Intense Low-oxygen Dilution) combustion has attracted attention as the clean thermal energy technology due to the lower emissions of unburnt carbon and NOx. MILD combustion aims to enlarge the combustion reaction zone using the spontaneous ignition phenomenon of the reactants. In this study, the ignition delay time of CH4 according to the initial temperature of reactants and the addition of CO, H2 was investigated using a numerical approach. Ignition delay time became shorter as the increases of initial temperature and H2 addition. But, CO addition to the fuel increase the ignition delay time. In case of H2 addition to the fuel, the ignition delay time decreased because the higher fraction of HO2 promotes the decomposition of methyl radical(CH3) and produce OH radical. However, in case of CO addition to the fuel, ignition delay time inceased because a high proportion of HCO consumes H radical. There was no significant effect of HCO on the reduction of ignition delay time. Also, the increase rates of NO emissions by the addition of CO and H2 were approximately 7% and 1%, respectively. A high proportion of NCO affects the increase in NO production rate.