• Title/Summary/Keyword: Reaction Mechanism

Search Result 2,684, Processing Time 0.024 seconds

Substitution of Gly-224 Residue to Ile in Yeast Alcohol Dehydro-genase and Enzyme Reaction Mechamism

  • Lee, Kang-Man;Ryu, Ji-Won
    • Archives of Pharmacal Research
    • /
    • v.16 no.3
    • /
    • pp.231-236
    • /
    • 1993
  • Gly-224 residue of yeast alcohol dehydrogenase was mutated by site-directed mufagenesis to isoleucine, which is the corresponding amino acid residue of horse liver alcohol dehydrogenase. The mutated gene on M13 vector was subcloned in YEp13 and used to transform Saccharomyces cerevisiae 302-21 #2 strain, and the expressed protein was purified. The tumover numbers of mutant enzyme for ethanol and acetaldehyde were decreased copared to wild-type enzyme. The results of product inhibition studies indicated that the reaction mechanism was changed to Iso Theorell-Chance from Ordered Bi Bi. We supposed that Gly-224 was related to the enzyme reaction mechanism.

  • PDF

Catalytic Activity of Supported Rhodium(I) Complex for the Carbonylation of Nitrobenzene: Mechanism for Carbamate Formation

  • Kim, Jin-Hyung;Kim, Dae-Won;Cheong, Min-Serk;Kim, Hoon-Sik;Mukherjee, Deb Kumar
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1621-1627
    • /
    • 2010
  • The investigation of the catalytic activity of supported rhodium(I) complex [Rh(P-S)$(CO)_2$] (P-S; polymer anchored salicylic acid) toward the reductive carbonylation of nitrobenzene in DMF medium has been reported. Use of basic cocatalysts in the reaction medium enhanced the percentage of more useful phenyl carbamates. Spectroscopic studies indicate that the reaction proceeds through a dimer species [Rh(HS)(CO)(C(O)$OCH_3$)(${\mu}-OCH_3)]_2$ and phenyl isocyanate is formed as an intermediate. A plausible reaction mechanism based on the identification of reactive intermediates from the soluble rhodium variety has been proposed for the carbonylation process.

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1563-1566
    • /
    • 2009
  • One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.

INVESTIGATION OF SOOT OXIDATION CHARACTERISTICS IN A SIMULATED DIESEL PARTICULATE FILTER

  • Lee, H.S.;Chun, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.261-267
    • /
    • 2006
  • Understanding the mechanism of carbon oxidation is important for the successful modeling of diesel particulate filter regeneration. Carbon oxidation characteristics were investigated by temperature programmed oxidation(TPO) method as well as constant temperature oxidation(CTO) with a flow reactor including porous bed. The activation energy of carbon oxidation was increasing with temperature and had two different constant values in the early and the later stage of the oxidation process respectively in TPO experiment. Kinetic constants were derived and the reaction mechanisms were assumed from the experimental results and a simple reaction scheme was proposed, which approximately predicted the overall oxidation process in TPO as well as CTO.

Kinetics and Mechanism for the Reaction of 4-Nitrophenyl 2-Furoate with Secondary Alicyclic Amines

  • 이종팔;윤지회;엄익환
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.805-808
    • /
    • 1999
  • Second-order-rate constants (kN) have been measured spectrophotometrically for the reactions of 4-nitrophenyl 2-furoate (1) with a series of secondary alicyclic amines in H2O containing 20 mole % DMSO at 25.0℃. 1 is about 5-8 times more reactive than 4-nitrophenyl benzoate (2), although 1 is expected to be less reactive than 2 based on MO calculations and 13 C NMR study. The Brфnsted-type plots for the aminolysis reactions of 1 and 2 are linear with βnuc values of 0.78 and 0.85, respectively. The replacement of the CH=CH group by an O atom in the acyl moiety (2->1) does not cause any mechanism change. The reaction of piperidine with a series of substituted phenyl 2-furoates gives a linear Hammett plot with a large ρ- value (ρ- = 2.88) when σ- constants are used. The linear Brфnsted and Hammett plots with a large ρ- value suggest that the aminolysis reaction of 1 proceeds via rate-determining break-down of the addition intermediate to the porducts.

Reactivity and Reaction Mechanism for Reactions of 1, 1'-(Azodicarbonyl) dipiperidine with Triphenylphosphines

  • 성대동;최미정;하근문;엄태섭
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.935-938
    • /
    • 1999
  • Reactivity and reaction mechanism for the reactions of 1,1'-(azodicarbonyl) dipiperidine with triphenylphosphines are investigated using kinetic method. The cation radical, Ph3P and the anion radical, -N-N - are produced during the course of the reaction. The cation radical is formed by the transfer of an electron from phosphorus to the nitrogen atom. The anion radical is formed by the addition of the one electron to the azo rad-ical. The rate constants are decreased by electron withdrawing groups while they are increased by electron donating groups present in triphenylphosphine. The electron density increases on nitrogen, while positive charge is developed on phosphorus in the transition state.

Numerical Analysis of Turbulent Combustion of a Kerosene/Oxygen Coaxial Injector with a Recess (리세스가 있는 케로신/산소 동축 분사기의 난류 연소 유동 해석)

  • Choi, Jeong-Yeol;Shin, Jae-Ryul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.77-78
    • /
    • 2011
  • A multi-step quasi-global mechanism is developed for the kerosene/oxygen combustion analysis including dissociation products. Reaction constants of the global reaction are determined to have agreement with experimental data. The mechanism is used for the numerical analysis of the combustion flow field of the kerosene/oxygen shear coaxial injector. The results from high-resolution numerical analysis confirmed qualitatively that the recess enhance the fuel/air mixing and combustion efficiency by the increased flow instabilities.

  • PDF

Very Efficient Nucleophilic Aromatic Fluorination Reaction in Molten Salts: A Mechanistic Study

  • Jang, Sung-Woo;Park, Sung-Woo;Lee, Byoung-Se;Chi, Dae-Yoon;Song, Choong-Eui;Lee, Sung-Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.881-884
    • /
    • 2012
  • We report a quantum chemical study of an extremely efficient nucleophilic aromatic fluorination in molten salts. We describe that the mechanism involves solvent anion interacting with the ion pair nucleophile $M^+F^-$(M = Na, K, Rb, Cs) to accelerate the reaction. We show that our proposed mechanism may well explain the excellent efficiency of molten salts for SNAr reactions, the relative efficacy of the metal cations, and also the observed large difference in rate constants in two molten salts $(n-C_4H_9)_4N^+\;CX_3SO_3^-$, (X=H, F) with slightly different sidechain ($-CH_3$ vs. $-CF_3$).

A Study on the Detailed Diesel Surrogate Chemical Mechanism for Analysis of HCCI Engine (HCCI 엔진 해석을 위한 Diesel Surrogate 반응 기구에 관한 연구)

  • Lee, Won-Jun;Lee, Seung-Ro;Lee, Chang-Eon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.64-71
    • /
    • 2011
  • Homogeneous charge compression ignition (HCCI) was the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process was mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. In this paper, detailed kinetic reaction mechanisms of diesel surrogate was investigated to understand the diesel HCCI engine combustion. It was tested two existing mechanisms and two new mechanisms for the comparison of experimental result. The best mechanism for diesel surrogate was suggested through this comparison.

Titanium Complexes: A Possible Catalyst for Controlled Radical Polymerization

  • Kwark, Young-Je;Kim, Jeong-Han;Novak Bruce M.
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2007
  • Pentamethylcyclopentadienyltitanium trichloride, bis(cyclopentadienyl)titanium dichloride ($Cp_2TiCl_2$), and bis(pentamethylcyclopentadienyl)titanium dichloride were used in the polymerization of styrene without the aid of Group I-III cocatalysts. The properties of the resulting polymer indicated that polymerization was more controlled than in thermal polymerization. The kinetic studies indicated that a lower level of termination is present and that the polymer chain can be extended by adding an additional monomer. To elucidate the mechanism of polymerization, a series of experiments was performed. All results supported the involvement of a radical mechanism in the polymerization using $Cp_2TiCl_2$. The possibility of atom transfer radical polymerization (ATRP) mechanism was investigated by isolating the intermediate species. We could confirm the activation step from the reaction of 1-PEC1 with $Cp_2TiCl$ by detecting the coupling product of the generated active radicals. However, the reversible deactivation reaction competes with other side reactions, and it detection was difficult with our model system.