• 제목/요약/키워드: Reaction Injection Molding

검색결과 37건 처리시간 0.021초

폴리우레탄 발포 노즐 형상이 혼합 성능에 미치는 영향 (Influences of Polyurethane Nozzle Shape on Mixing Efficiency)

  • 김도연;이태경;정해도;김형재
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.31-35
    • /
    • 2016
  • For reaction injection molding (RIM) polyurethane was mixed in the mixing head by impingement mixing, injected into the mold, and cured quickly, as soon as the mold is filled. The shape of the nozzle in the mixing head is critical to improve the quality of polyurethane. To achieve homogeneous mixing, an intensive turbulence energy in the mixing nozzle is essential. In this study, a mixing nozzle for RIM was designed, and mixing efficiency was investigated based on experiment. Experiments were conducted with different combinations of nozzle tips and exit diameter to measure the mixing efficiency by measuring jet force and investigating mixing image with high speed camera. Jet force increased gradually and reaches steady state conditions. The jet force depended on shape of nozzle tip and outlet sizes. These results suggest that optimized nozzle configurations are necessary for high efficiency mixing with RIM.

생체분해성 폴리카프로락톤(PCL) 미세혈관 문합커플러의 사출성형조건에 따른 문합강도 및 in-vitro 분해능 평가 (Evaluation of Anastomotic Strength and in-vitro Degradability with Microvascular Anastomosis Coupler Based on Injection Molding Condition made by Biodegradable Polycaprolactone(PCL))

  • 안근선;한기봉;오승현;박종웅;김철웅
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제1권2호
    • /
    • pp.167-177
    • /
    • 2013
  • 최근 미세혈관 문합수술 시 봉합사 대신 기계식 문합커플러를 사용하는 수술례가 증가하고 있다. 그러나 기존의 비분해성 문합커플러는 염증반응 뿐만 아니라 수술 후 영구적으로 인체 내에 잔존한다는 한계성이 있다. 따라서 본 연구에서는 기존 비분해성 문합커플러의 한계성을 극복하기 위해 사출성형공정을 이용한 생분해성 PCL 문합커플러 제작을 채택하였다. 사출성형 공정조건 중 실린더온도와 사출압력에 따른 수축률을 계산하고 이에 따른 문합강도를 측정하였다. 그 결과 핀보다는 홀 파트의 수축률 변화가 크게 나타났다. 또한 수축률은 실린더온도가 상승할수록 증가하였으나 반대로 사출압력이 높아질수록 감소하는 경향이 나타났다. PCL 문합 커플러의 in-vitro 분해거동을 12주간 평가한 결과, 수분흡수는 증가하고 분자량은 감소하여 생체분해를 동반한 질량 및 문합강도의 감소를 확인할 수 있었다. 그러나 문합강도의 저하 수준이 전임상 요구조건을 충분히 상회하기에 PCL 문합커플러는 미세혈관수술에 적합한 후보재료임을 파악할 수 있었다.

The development of Dy free MAGFINE and its applications to Motors

  • Honkura, Yoshinobu
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 자성 및 자성재료 국제학술대회
    • /
    • pp.95-95
    • /
    • 2013
  • The NdFeB magnet can be classified into the sintered magnet and bonded magnet. The former has superior magnet characteristics but the degree of freedom in shape is highly restricted, whereas the latter has a high degree of freedom, but its magnet characteristics are inferior to the former. When a NdFeB magnet is used at the elevated temperature, part of Nd must be replaced with a high priced Dy to increase its coercive force. For these reasons, a Dy free and high performance NdFeB bonded magnet is desired strongly. The author successfully developed a Dy free NdFeB anisotropic bonded magnet based on discovery of new phenomena called as d-HDDR reaction and its mass production process such as a thermally balanced hydrogen reaction furnace, micro capsuled powder, compression molding / injection molding under magnetic field, magnetic die and so on. Applied to DC brush seat motor for automotive use, the motor has become 50% small in size and weight. The commercialization of a half sized motor for automotive use has been realized up to the market share of 30%. At present, its commercialization is extending to various types of motors such as power tool, ABS motor, wiper motor, window motor, electric bike power motor, and compressor motor. It is expected that the applications will be increasingly enlarged to EV motor, wind generator, EPS motor, washing machine, and glass cutting machine. This innovative technology has realized Dy free high performance magnet and mudt make big contribution to not only rare element strategies but also energy conservation.

  • PDF

S-RIM을 이용한 Glass Fiber Chopped Strand Mat 강화 p-DCPD 복합재료 제작 및 수치해석을 통한 공정 시간 예측 (Manufacturing and Numerical Analysis of Glass Fiber Chopped Strand Mat Reinforced p-DCPD Composites Processed by S-RIM)

  • 유형민;엄문광;최성웅
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.629-634
    • /
    • 2019
  • Dicyclopentadiene is a low viscosity resin which forms a poly-dicyclopentadiene rapidly through ring opening metathesis polymerization (ROMP). This poly-dicyclopentadiene has outstanding properties of low-temperature, water and impact resistances. Due to these advantages, military and offshore structures try to apply the DCPD composites by using liquid composite molding process. In this study, 14%, 38% volume fraction fiber glass strand mat reinforced p-DCPD composites processed by structural reaction injection molding (S-RIM) which has resin-catalsyt mixing head and glass fiber preform in the mold. Additionally, S-RIM numerical analysis was conducted to predict the process time depending on fiber volume fraction and mold temperature. The process time is shorter when it has the lower fiber volume fraction or the higher mold temperature. At higher mold temperature, it is necessary to set the maximum mold temperature considering the resin curing time.

핫엠보싱 충전공정에 관한 수치해석 (Numerical simulation of hot embossing filling)

  • 강태곤;권태헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

Ceramic 재질을 이용한 자동차용 대형 디젤엔진 Valve Lifter 연구 II. 사출성형에 의한 탄화규소질 Valve Lifter 개발 (Studies of Valve Lifer for Automotive Heavy Duty Diesel Engine by Ceramic Materials II. Development of SiC Valve Lifter by Injection Molding Method)

  • 윤호욱;한인섭;임연수;정윤중
    • 한국세라믹학회지
    • /
    • 제35권2호
    • /
    • pp.172-179
    • /
    • 1998
  • Valve lifter namely tappet is supported by lifter hole which is located upper side of camshaft in cylinder block transforms rotatic mvement of camshaft into linear movement and helps to open and shut the en-gine valve as an engine parts. The face of valve lifter which is continuously contacting with camshaft brings about abnormal wears such as unfair wear and early wear because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears therefore The valve lifter cast in me-tal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance As a results the optimum process conditions like injection condition mixture ratio and debonding process could be established. After sintering fine-sinered dual microstructure in which prior ${\alpha}$-SiC matches well with new SiC(${\beta}$-SiC) produced by reaction among the ${\alpha}$-SiC carbon and silicon was obtained. Based on the study it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100-1200 bending strength (300-350 Pa) fracture toughness(1.5-1.7 Mpa$.$m1/2) Through engine dynamo test-ing SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such as early fracture unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resis-tance relaibility and lightability.

  • PDF

연속흐름 중합효소연쇄반응칩 제작을 위한 인듐 산화막 전극의 특성분석 (Characteristics of Indium-Tin-Oxide Electrode for Continuous-flow PCR Chip)

  • 정승룡;김준혁;이인제;강치중;김용상
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.561-565
    • /
    • 2007
  • We propose glass and PDMS (polydimethylsiloxane) chips for DNA amplification with continuous-flow PCR (polymerase chain reaction). The PDMS microchannel was fabricated using a negative molding method for sample injection. Three heaters and sensors of ITO (indium-tin-oxide) thin films were fabricated on glass chip. ITO heaters and sensors were calibrated accurately for the temperature control of the liquid flow. ITO heater generated stable heat versus applied power. ITO sensor resistance was changed linearly versus temperature increase as a RTD (resistance temperature detector) sensor. As a result, we enable precision temperature control of continuous-flow PCR chip. Using the continuous-flow PCR chip DNA plasmid pKS-GFP 720 bp was successfully amplified.

시작 차량의 실내 감성 향상에 관한 연구 (A Study on Enhancement of Human Sensitivity for Interior of Prototype Vehicles)

  • 최재원;양화준;이석희
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.124-131
    • /
    • 2003
  • As the new model development lead time becoming shorter and the market requirements becoming more strict, automobile manufacturer begins to utilize 3-dimensional CAD system based techniques such as DMU (Digital Mock-up), Rf (Rapid Prototyping), VE (Virtual Engineering) to meet the market trends. But, no satisfactory utilities have been developed yet, to represent emotional properties such as embossment on the surface of interior parts, touch originated from material characteristics in virtual environment, so it is inevitable to manufacture prototype parts to verify actual feeling which passengers feel in automobile. This paper suggests a methodology to enhance the human sensitivity via embodying embossment on the surface of prototype car interior trim without deterioration of dimensional accuracy using RIM (Reaction Injection Molding) and thermoforming method.

시작 차량 감성 품질 개선에 관한 연구 (A Study on enhancement of emotional quality of prototype-car)

  • 최재원;양화준;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.358-361
    • /
    • 2000
  • To reduce the leadtime for a new model according to the strict market requirements, automobile manufacturer begins to utilize 3-dimensional CAD based techniques such as DMU(Digital Mock-Up). RP(Rapid Prototyping), VE(Virtual Engineering). But, not so many satisfactory utilities have been introduced to deal with the emotional properties such as embossment on the surface of interior parts and touch from material characteristics in virtual environment. It is required to manufacture prototype parts to verify actual feeling of the passengers in real automobile. This paper suggests a methodology to enhance emotional property via embedding embossment on the surface of prototype car interior trim without deterioration of dimensional accuracy using RIM(Reaction Injection Molding) and vacuum forming method.

  • PDF

임펠러 형상에 따른 교반기의 유동특성에 관한 연구 (A Study on the Flow Characteristics of Mixer by Impeller Types)

  • 양창조;최민선;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.899-905
    • /
    • 2003
  • Mixers are used in several industrial applications where it is necessary to strongly mix reactants in a short period of time (eg. reaction injection molding, ceramics manufacturing, crystallization). However, despite their widespread use, mixing flow characteristics in these systems have not been rigorously investigated. Influence of blade shapes on the mixing time and the power consumption per unit volume in two kinds of impeller including the mixing effects are studied by PIV experiment. A series of the experiments were carried out to achieve a better mixing effect in simple baffle arrangement and tall vessel with modified impellers(two kinds of blades : pitched blade turbine and rushton turbine). Results show that periodic vortex from the mixing layer is predominant and related unsteady flow characteristics prevail over the entire region.