• Title/Summary/Keyword: Reaction Gas

Search Result 2,915, Processing Time 0.036 seconds

An Axisymmetrical Study on the Secondary Reaction of Launch Vehicle Turbine Exhaust Gas Using the Detailed Chemistry Model (상세 화학반응 모델을 이용한 발사체 터빈 배기가스의 이차연소 해석의 축대칭 해석)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.857-862
    • /
    • 2011
  • 3 dimensional turbine exhaust gas flow was simplified to an axisymmetrical flow and calculated with detailed chemistry models. GRI 35 species-217 reaction step model and simplified 11 species 15 reaction model was applied to the secondary reaction of the turbine exhaust gas and compared. All the model captured the secondary combustion on the base region, and the temperature was 600K higher than that without turbine exhaust gas. This means the local temperature of the base can be higher in the case of real 3 dimensional flow. The simplified model show the similar results to the GRI detailed chemistry model although the former affected the engine plume structure slightly.

  • PDF

Thermal Decomposition Reaction of Gas-phase Uranyl Complexes as Studied by in-Situ IR Spectroscopy

  • Cho, Young-Hwan;Choi, In-Kyu;Kim, Won-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.05a
    • /
    • pp.420.1-420
    • /
    • 2002
  • Thermal decomposition reaction of gas-phase UO2(hfacac)2. THF was investigated in a static cell. IR spectroscopic method was used to study the thermal decomptsition of gas phase uranyl complexes. The decomposition reaction products were separated by using thermal-gradient fractional sublimation method utilizing the differences in their volatility.

  • PDF

Review on the water-gas shift process for a coal SNG project (석탄 SNG 생산설비의 수성가스전환 공정 분석)

  • Kim, Youngdo;Shin, Yongseung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • Coal gasification is considered as one of the most prospective technologies in energy field since it can be utilized for various products such as electricity, SNG (Synthetic Natural Gas or Substitute Natural Gas) and other chemical products. Among those products from coal gasification, SNG is emerging as a very lucrative product due to the rising prices of oil and natural gas, especially in Asian countries. The process of SNG production is very similar to the conventional IGCC in that the overall process is highly dependent on the type of gasifier and coal rank. However, there are some differences between SNG production and IGCC, which is that SNG plant requires higher oxygen purity from oxygen plant and more complex gas cleanup processes including water-gas shift reaction and methanation. Water-gas shift reaction is one of the main process in SNG plant because it is a starting point for the latter gas cleanup processes. For the methanation process, syngas is required to have a composition of $H_2$/CO = 3. This study reviewed various considerations for water-gas shift process in a conceptual design on an early stage like a feasibility study for a real project. The factors that affect the design parameters of water-gas shift reaction include the coal properties, the type of gasifier, the overall thermal efficiency of the plant and so on. Water-gas shift reaction is a relatively proven technology compared to the other processes in SNG plant so that it can reduce technological variability when designing a SNG project.

  • PDF

Fabrication of CuO/ZnO Nano-heterostructure by Photochemical Method and Their H2S Gas Sensing Properties

  • Kim, Jae-Hyun;Yong, Ki-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.359-359
    • /
    • 2011
  • This study reports the H2S gas sensing properties of CuO / ZnO nano-hetero structure bundle and the investigation of gas sensing mechanism. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and CuO / ZnO nano-heterostructures were prepared by photo chemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. In order to improve the H2S gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by photo-chemical deposition of CuO on the ZnO nanorods bundle. The furnace type gas sensing system was used to characterize sensing properties with diluted H2S gas (50 ppm) balanced air at various operating temperature up to 500$^{\circ}C$. The H2S gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. Photo-chemically fabricated CuO/ZnO heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with H2S gas.

  • PDF

A Study on the Characteristics of Mixed Combustion for Hydrox Gas (Hydrox Gas 혼합연소특성 에 관한 연구)

  • Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.230-234
    • /
    • 2010
  • Hydrox gas which is the mixed gas of hydrogen and oxygen gained fromwater electrolysis is one of the new clean energy sources and thus is researched and commercialized actively. Especially, it can be replaced the fossil energy and shows the better quality compared to the conventional energy such as LPG or acetylene gas. The mixed gas of hydrogen and oxygen is gained from water electrolysis reaction. It has constant volume ratio 2:1 of hydrogen and oxygen, and it is used as a source of thermal energy by combustion reaction. Further, hydrox gas is nearly a mixed ideal gas combusting itself completely and its combustion shows anunique characteristics of implosion. In this study, temperature rise effects on hydrox gas content through mixed combustion test of kerosene and hydrox gas and LPG and hydrox gas are investigated. it is also confirmed that economy of mixed combustion of hydrox gas as effective energy is fairly probable.

A Study of the Temperature Elevation Due to the Pre-flame Reaction in a Spark-Ignition Engine Using CARS Technique (CARS 측정 기술을 이용한 스파크 점화 기관에서의 화염 전 화학 반응에 의한 온도 변화에 관한 연구)

  • 최인용;전광민;박철웅;한재원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.9-16
    • /
    • 2001
  • End-gas temperatures were measured using CARS technique in a conventional DOHC spark- ignition engine fueled with PRF80. The measured pressure data were analyzed using band pass filter method. The measured CARS temperatures were compared with adiabatic core temperatures calculated from measured pressures. Significant heating by pre-flame reaction in the end gas zone was observed in the late part of compression stroke under both knocking and non-knocking conditions. CARS temperatures measured at 10 crank angle degree before knock occurrence was higher than adiabatic core temperatures. These results indicate that there exist some exothermic reactions in low pressure and temperature region. CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached look. The temperature elevation due to the pre-flame reaction correlated better with CARS temperature than with cylinder pressure.

  • PDF

Noble metal catalysts for water gas shift reaction and their effectiveness factor (귀금속 계열 촉매의 수성가스전환반응특성과 유효인자)

  • Lim, Sung-Kwang;Bae, Joong-Myeon;Kim, Ki-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.514-517
    • /
    • 2008
  • Water gas shift(WGS) is an important step in fuel process for fuel cells, and improperness of commercial WGS catalysts for use in fuel cell systems has prompted numerous researches on noble metal catalysts. A selected noble metal catalyst for water gas shift reaction(WGS) was prepared with various metal loadings. The prepared catalysts were tested under two feeding conditions. At moderate residence time, carbon monoxide conversion was much higher on the noble metal catalysts as compared to commercial high-temperature shift catalyst. Effects of metal loading were examined by activity tests at short residence time. Higher metal loading effected higher reaction rate. The kinetic data was fitted to simple reaction equations and effectiveness factor was estimated. The results suggest the necessity of a structural design for the highly active noble metal catalysts.

  • PDF

A Study of the Temperature Elevation Due to the Pre-flame Reaction Using CARS (CARS 를 이용한 스파크 점화 기관에서의 화염 전화학 반응에 의한 온도 변화에 관한 연구)

  • Choi, In-Yong;Chun, Kwang-Min;Park, Chul-Woung;Hahn, Jae-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.85-92
    • /
    • 2000
  • End-gas temperatures were measured using CARS technique in a conventional DOHC spark-ignition engine fueled with PRF80. The measured pressure data were analyzed using band pass filter method. The measured CARS temperatures were compared with adiabatic core temperatures calculated from measured pressure. Significant heating by pre-flame reaction in the end gas was observed in the late part of compression stroke under both knocking and non-knocking condition. CARS temperatures measured at 10 crank angle degree before knock occurrence was higher than adiabatic core temperatures. These results indicate that there exist some exothermic reactions in low pressure and temperature region. CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached 700 K. The temperature elevation due to the pre-flame reaction correlated better with CARS temperature than with cylinder pressure.

  • PDF

Studies on Surface and Gas Reactions in a Catalytically Stabilized Combustor (촉매연소가 지원된 연소기에서의 표면반응과 가스반응에 관한 연구)

  • Seo, Yong-Seog;Yu, Sang-Phil;Jeong, Nam-Jo;Lee, Seung-Jae;Song, Kwang-Sup;Kang, Sung-Kyu
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.287-298
    • /
    • 2003
  • A numerical investigation of a catalytically stabilized thermal (CST) combustor was conducted for a multi-channel catalyst bed, and both the catalyst bed and thermal combustor were simultaneously modeled. The numerical model handled the coupling of the surface and gas reaction in the catalyst bed as well as the gas reaction in the thermal combustor. The behavior of the catalyst bed was investigated at a variety of operating conditions, and location of the flame in the CST combustor was investigated via an analysis of the distribution of CO concentration. Through parametric analyses of the flame position, it was possible to derive a criterion to determine whether the flame is present in the catalyst bed or the thermal combustor for a given inlet condition. The results showed that the maximum inlet temperature at which the flame is located in the thermal combustor increased with increasing inlet velocity.

  • PDF