• Title/Summary/Keyword: Reach Extender

Search Result 5, Processing Time 0.017 seconds

Low-Cost, Low-Power, High-Capacity 3R OEO-Type Reach Extender for a Long-Reach TDMA-PON

  • Kim, Kwang-Ok;Lee, Jie-Hyun;Lee, Sang-Soo;Lee, Jong-Hyun;Jang, Youn-Seon
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.352-360
    • /
    • 2012
  • This paper proposes a low-cost, low-power, and high-capacity optical-electrical-optical-type reach extender that can provide 3R frame regeneration and remote management to increase the reach and split ratio with no change to a legacy time division multiple access passive optical network. To provide remote management, the extender gathers information regarding optical transceivers and link status per port and then transmits to a service provider using a simple network management protocol agent. The extender can also apply to an Ethernet passive optical network (E-PON) or a gigabit-capable PON (G-PON) by remote control. In a G-PON, in particular, it can provide burst mode signal retiming and burst-to-continuous mode conversion at the upstream path through a G-PON transmission convergence frame adaptor. Our proposed reach extender is based on the quad-port architecture for cost-effective design and can accommodate both the physical reach of 60 km and the 512 split ratios in a G-PON and the physical reach of 80 km and the 256 split ratios in an E-PON.

2.5 Gbps Hybrid PON link Using RSOA Based WDM-PON and a Reach Extender (RSOA기반 WDM-PON 링크와 Reach Extender를 이용한 2.5 Gbps 하이브리드 PON 링크 기술)

  • Kim, Kwang-Ok;Lee, Jie-Hyun;Lee, Sang-Soo;Jang, Youn-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.583-591
    • /
    • 2011
  • We presents the architecture of the 2.5 Gbps hybrid PON link which can increase of the transmission distance and link capability, and split ratio by using a colorless DWDM-PON and O/E/O based reach extender into an existing G-PON link. A RSOA based DWDM-PON to apply the feeder fiber can provide a link capacity of 32 larger that of a legacy G-PON. The reach extender converts the wavelength of DWDM-PON to G-PON through GTC frame regeneration at the remote node, and can provide a burst reset signal in order to extract upstream burst signal, simultaneously. The proposed hybrid PON enable a legacy G-PON to operate over the maximum 60 km distance with a 128-way split per WDM wavelength.

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

  • Kang, Byoung-Wook;Kim, Chul-Han
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.222-226
    • /
    • 2011
  • We demonstrated the feasibility of an amplified wavelength-division multiplexed passive optical network (WDM-PON) architecture based on broadband light source (BLS) seeded optical sources and a novel bidirectional reach extender. Our bidirectional reach extender could provide an amplification of both downstream and upstream signals as well as a BLS output for the upstream WDM signal generation. An error-free 1.25 Gb/s signal transmission over a 100-km long single-mode fiber was achieved in a bidirectional WDM-PON using BLS seeded reflective semiconductor optical amplifier (RSOA) sources.

Design of a Cost-Effective Hybrid-Type PBEx Providing a High Power Budget in an Asymmetric 10G-EPON

  • Kim, Kwangok;Lee, Sangsoo;Lee, Jonghyun;Jang, Younseon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.838-846
    • /
    • 2012
  • This paper proposes a cost-effective hybrid-type power budget extender (PBEx) that can provide a high power budget of over 45 dB in an asymmetric 10-Gb/s Ethernet passive optical network (10/1G-EPON). The hybrid-type 10/1G-EPON PBEx comprises a central office terminal (COT) and remote terminal (RT) module supporting four channels and uses a coarse wavelength division multiplexing (CWDM) technology between the COT and RT for a reduction of fiber cost and efficient access network design. The proposed 10/1G-EPON PBEx can provide over a 40-km reach and 128-way split per CWDM wavelength with no modification of a legacy 10/1G-EPON system and can satisfy the error-free service in $10^{10}$ packet transmission.

The Development of 1G-PON Reach Extender based on Wavelength Division Multiplexing for Reduction of Optical Core (국사 광역화와 광코어 절감을 위한 파장분할다중 기반의 1기가급 수동 광가입자망 Reach Extender 효율 극대화 기술 개발)

  • Lee, Kyu-Man;Kwon, Taek-Won
    • Journal of Digital Convergence
    • /
    • v.17 no.8
    • /
    • pp.229-235
    • /
    • 2019
  • As the demand for broadband multimedia including the Internet explosively increases, the advancement of the subscriber network is becoming the biggest issue in the telecommunication industry due to the surge of data traffic caused by the emergence of new services such as smart phone, IPTV, VoIP, VOD and cloud services. In this paper, we have developed WDM(Wavelength Division Multiplexing)-PON(passive optical network) based on the 1-Gigabit Reach Externder (RE) technique to reduce optical core. Particularly, in order to strengthen the market competitiveness, we considered low cost, miniaturization, integration technique, and low power of optical parts. In addition, we have developed a batch system by integrating all techniques for reliability, remote management through the development of transmission distance extension and development of capacity increase of optical line by using RE technology in existing PON network. Based on system interworking with existing commercial 1G PON devices, it can be worthy of achievement of wide nationalization and optical core reduction by using this developed system. Based on these results, we are studying development of 10G PON technology.