• Title/Summary/Keyword: ReLU

검색결과 102건 처리시간 0.027초

A Preliminary Study on Urban Pollution and Modern Shanghai Society

  • Lu, Ye
    • Journal of East-Asian Urban History
    • /
    • 제2권1호
    • /
    • pp.7-26
    • /
    • 2020
  • Urban pollution has been a problem in China since ancient times. In modern times, pollution was aggravated by industrialization and urbanization and became closely related to people's lives. Shanghai was the industrial center and the most urbanized place of modern China. As a price, it needed to face extremely serious urban pollution, and the treatment of this problem involved all aspects of social life. Noise pollution let foreigners to interpret the Chinese people and the city of Shanghai from a cultural perspective, and let Chinese residents to understand Shanghai and the nation from a civilized perspective. Pollution regulation made Shanghai the first city in modern China to implement overall pollution control and levy environmental protection fees. It also enabled the Chinese to gradually fight for their rights in urban governance. Urban pollution also brought business opportunities; in the highly commercial city of Shanghai, it promoted the development of some industries. The experience of urban pollution and its treatment prompted the people of Shanghai to rethink and re-recognize modern civilization, and also promoted the formation of Shanghai urban community.

Discernment of Android User Interaction Data Distribution Using Deep Learning

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권3호
    • /
    • pp.143-148
    • /
    • 2022
  • In this paper, we employ deep neural network (DNN) to discern Android user interaction data distribution from artificial data distribution. We utilize real Android user interaction trace dataset collected from [1] to evaluate our DNN design. In particular, we use sequential model with 4 dense hidden layers and 1 dense output layer in TensorFlow and Keras. We also deploy sigmoid activation function for a dense output layer with 1 neuron and ReLU activation function for each dense hidden layer with 32 neurons. Our evaluation shows that our DNN design fulfills high test accuracy of at least 0.9955 and low test loss of at most 0.0116 in all cases of artificial data distributions.

OpenAI Gym 환경의 Mountain-Car에 대한 DQN 강화학습 (DQN Reinforcement Learning for Mountain-Car in OpenAI Gym Environment)

  • 강명주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.375-377
    • /
    • 2024
  • 본 논문에서는 OpenAI Gym 환경에서 프로그램으로 간단한 제어가 가능한 Mountain-Car-v0 게임에 대해 DQN(Deep Q-Networks) 강화학습을 진행하였다. 본 논문에서 적용한 DQN 네트워크는 입력층 1개, 은닉층 3개, 출력층 1개로 구성하였고, 입력층과 은닉층에서의 활성화함수는 ReLU를, 출력층에서는 Linear함수를 활성화함수로 적용하였다. 실험은 Mountain-Car-v0에 대해 DQN 강화학습을 진행했을 때 각 에피소드별로 획득한 보상 결과를 살펴보고, 보상구간에 포함된 횟수를 분석하였다. 실험결과 전체 100회의 에피소드 중 보상을 50 이상 획득한 에피소드가 85개로 나타났다.

  • PDF

치주질환 예측을 위한 치과 X-선 영상에서의 초해상화 알고리즘 적용 가능성 연구 (Investigation of the Super-resolution Algorithm for the Prediction of Periodontal Disease in Dental X-ray Radiography)

  • 김한나
    • 한국방사선학회논문지
    • /
    • 제15권2호
    • /
    • pp.153-158
    • /
    • 2021
  • 치주질환의 조기 진단률 및 예측 정확도 향상을 위한 X-선 영상 분석은 매우 중요한 분야이다. 이러한 치과 X-선 영상의 화질 개선을 위한 인공 지능 기반의 알고리즘 개발 및 적용에 관한 연구는 전 세계적으로 널리 수행 중이다. 따라서 본 연구의 목표는 치주질환 예측을 위한 치과 X-선 영상에서의 초해상화 알고리즘의 모델링 및 적용 가능성에 관하여 평가하는 것이다. 초해상화 알고리즘은 convolution layer와 ReLU를 기반으로 구성하였고, 저해상도 영상을 2배로 업샘플링 한 영상을 입력으로 사용하였다. 딥러닝 훈련을 위해 사용한 치과 X-선 데이터는 1,500장을 사용하였다. 영상의 정량적 평가는 2가지 영상의 비교를 통해 유사도를 측정할 수 있는 인자인 root mean square error와 structural similarity를 사용하였다. 이와 더불어 최근에 개발된 no-reference 기반으로 사용되는 natural image quality evaluator 와 blind/referenceless image spatial quality evaluator를 추가적으로 분석하였다. 결과적으로 기존에 사용되던 bicubic 기반의 업샘플링 기법을 사용하였을 때에 비하여 제안하는 방법이 치과 X-선 영상에서 평균적으로 유사도와 no-reference 기반의 평가 인자가 각각 1.86 그리고 2.14배 향상됨을 확인하였다. 결론적으로 치주질환의 예측을 위한 초해상화 알고리즘의 치과 X-선 영상에서의 유용성을 증명하였고 향후 다양한 분야에서의 적용 가능성이 높을 것으로 기대된다.

심층강화학습을 이용한 Convolutional Network 기반 전산화단층영상 잡음 저감 기술 개발 (Development of Convolutional Network-based Denoising Technique using Deep Reinforcement Learning in Computed Tomography)

  • 조정효;임도빈;남기복;이다혜;이승완
    • 한국방사선학회논문지
    • /
    • 제14권7호
    • /
    • pp.991-1001
    • /
    • 2020
  • 전산화단층영상 품질 개선을 위해 사용되는 지도학습 기반의 딥러닝 기술은 사전 학습을 위해 많은 양의 데이터를 필요로 하는 단점이 있다. 또한 지도학습 기반의 딥러닝 기술은 학습에 사용된 영상의 특징과 학습된 모델에 입력된 영상의 특징이 다른 경우 영상 내부 구조적 왜곡이 유발되는 한계점이 있다. 본 연구에서는 기존 지도학습 기반 딥러닝 기술의 단점을 보완하고 전산화단층영상의 잡음을 감소시킬 수 있는 심층강화학습 기반 영상화 모델을 개발하였다. 심층강화학습 기반 영상화 모델은 shared, value 및 policy 네트워크로 구성하였으며, 영상 잡음 특징 추출 및 모델의 성능 향상을 위해 합성곱, rectified linear unit(ReLU) 활성화 함수, dilation factor 및 게이트순환유닛을 사용하였다. 또한 기존 지도학습 기반 딥러닝 기술을 통해 획득한 영상의 영상품질 비교를 통해 본 연구에서 개발한 영상화 모델의 성능을 평가하였다. 연구결과 기존 기술에 비해 본 연구에서 개발한 영상화 모델 적용 시 전산화단층영상의 정량적 정확도는 큰 폭으로 향상, 잡음은 큰 폭으로 감소함을 확인하였다. 또한 영상화 모델 학습 시 사용한 영상과 구조적 특징이 다른 영상에 대해서도 잡음 감소 효과를 확인하였다. 따라서 본 연구에서 개발한 심층강화학습 기반 영상화 모델을 통해 전산화단층영상의 구조적 특징을 보전함과 동시에 잡음을 감소시킬 수 있다.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.1-7
    • /
    • 2024
  • 본 논문은 MNIST 데이터셋을 활용한 손글씨 숫자 인식에서 합성곱 신경망(CNN)과 배치정규화(BN)를 결합한 모델을 제안한다. LeCun et al.의 LeNet-5 모델의 성과를 뛰어넘는 것을 목표로 6계층 신경망 구조를 설계하였다. 제안된 모델은 28×28 픽셀 이미지를 입력으로 받아 합성곱, 맥스 풀링, 완전연결계층을 거쳐 처리하며, 특히 배치정규화계층을 도입하여 학습 안정성과 성능을 향상시켰다. 실험에서는 60,000개의 훈련 이미지와 10,000개의 테스트 이미지를 사용하였으며, Momentum 최적화 알고리즘을 적용하였다. 모델 구성에서는 30개의 필터, 필터 사이즈 5×5, 패딩 0, 스트라이드 1을 사용하였고, ReLU 활성화 함수를 채택하였다. 훈련 과정에서는 미니배치 사이즈 100, 총 20 에포크, 학습률 0.1로 설정하였다. 결과적으로 제안된 모델은 99.22%의 테스트 정확도를 달성하여 LeNet-5의 99.05%를 상회하였으며, F1-score 0.9919를 기록하여 모델의 성능을 입증하였다. 또한, 본 논문에서 제안한 6계층 모델은 LeCun et al.의 LeNet-5(7계층 모델)와 Ji, Chun and Kim(10계층 모델)이 제안한 모델보다 더 단순한 구조로 모델의 효율성을 강조하였다. 본 연구의 결과는 AI 비전 검사기 등 실제 산업 응용에서 활용 가능성을 보여주며, 특히 스마트팩토리에서 부품의 불량 상태를 판별하는 데 효과적으로 적용될 수 있을 것으로 기대된다.

뼈전이의 방사성동위원소 통증치료 (Radiopharmaceuticals for the Therapy of Metastatic Bone Pain)

  • 안병철
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제40권2호
    • /
    • pp.82-89
    • /
    • 2006
  • Bone metastasis is a common sequelae of solid malignant tumors such as prostate, breast, lung, and renal cancers, which can lead to various complications, including fractures, hypercalcemia, and bone pain, as well as reduced performance status and quality of life it occurs as a result of a complex pathophysiologic process between host and tumor cells leading to cellular invasion, migration adhesion, and stimulation of osteoclastic and osteoblastic activity. Several sequelae occur as a result of osseous metastases and resulting bone pain can lead to significant debilitation. A multidisciplinary approach is usually required not only to address the etiology of the pain and its complicating factors but also to treat the patient appropriately. Pharmaceutical therapy of bone pain, includes non-steroidal analgesics, opiates, steroids, hormones, bisphosphonates, and chemotherapy. While external beam radiation therapy remains the mainstay of pain palliation of a solitary lesions, bone seeking radiopharmaceuticals have entered the therapeutic armamentarium for the treatment of multiple painful osseous lesions. $^{32}P,\;^{89}SrCl,\;^{153}Sm-EDTMP,\;^{188}Re/^{186}Re-HEDP,\;and\;^{177}Lu-EDTMP$ can be used to treat painful osseous metastases. These various radiopharmaceuticals have shown good efficacy in relieving bone pain secondary to bone metastasis. This systemic form of metabolic radiotherapy is simple to administer and complements other treatment options. This has been associated with improved mobility in many patients, reduced dependence on narcotic and non-narcotic analgesics, improved performance status and quality of life, and, in some studios, improved survival. All of these agents, although comprising different physical and chemical characteristics, offer certain advantages in that they are simple to administer, are well tolerated by the patient if used appropriately, and can be used alone or in combination with the other forms of treatment. This article illustrates the salient features of these radiopharmaceuticals, including the usual therapuetic dose, method of administration, and indications for use and also describe about the pre-management checklists, and jndication/contraindication and follow-up protocol.

AN ASSESSMENT OF PARALLEL PRECONDITIONERS FOR THE INTERIOR SPARSE GENERALIZED EIGENVALUE PROBLEMS BY CG-TYPE METHODS ON AN IBM REGATTA MACHINE

  • Ma, Sang-Back;Jang, Ho-Jong
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.435-443
    • /
    • 2007
  • Computing the interior spectrum of large sparse generalized eigenvalue problems $Ax\;=\;{\lambda}Bx$, where A and b are large sparse and SPD(Symmetric Positive Definite), is often required in areas such as structural mechanics and quantum chemistry, to name a few. Recently, CG-type methods have been found useful and hence, very amenable to parallel computation for very large problems. Also, as in the case of linear systems proper choice of preconditioning is known to accelerate the rate of convergence. After the smallest eigenpair is found we use the orthogonal deflation technique to find the next m-1 eigenvalues, which is also suitable for parallelization. This offers advantages over Jacobi-Davidson methods with partial shifts, which requires re-computation of preconditioner matrx with new shifts. We consider as preconditioners Incomplete LU(ILU)(0) in two variants, ever-relaxation(SOR), and Point-symmetric SOR(SSOR). We set m to be 5. We conducted our experiments on matrices from discretizations of partial differential equations by finite difference method. The generated matrices has dimensions up to 4 million and total number of processors are 32. MPI(Message Passing Interface) library was used for interprocessor communications. Our results show that in general the Multi-Color ILU(0) gives the best performance.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

PET-CT 영상 알츠하이머 분류에서 유전 알고리즘 이용한 심층학습 모델 최적화 (Optimization of Deep Learning Model Using Genetic Algorithm in PET-CT Image Alzheimer's Classification)

  • 이상협;강도영;송종관;박장식
    • 한국멀티미디어학회논문지
    • /
    • 제23권9호
    • /
    • pp.1129-1138
    • /
    • 2020
  • The performance of convolutional deep learning networks is generally determined according to parameters of target dataset, structure of network, convolution kernel, activation function, and optimization algorithm. In this paper, a genetic algorithm is used to select the appropriate deep learning model and parameters for Alzheimer's classification and to compare the learning results with preliminary experiment. We compare and analyze the Alzheimer's disease classification performance of VGG-16, GoogLeNet, and ResNet to select an effective network for detecting AD and MCI. The simulation results show that the network structure is ResNet, the activation function is ReLU, the optimization algorithm is Adam, and the convolution kernel has a 3-dilated convolution filter for the accuracy of dementia medical images.