• 제목/요약/키워드: Re-corrosion

검색결과 109건 처리시간 0.018초

주조 상태 및 용체화처리한 AZ91-4%RE 마그네슘 합금의 부식 거동 (Corrosion Behavior of As-Cast and Solution-Treated AZ91-4%RE Magnesium Alloy)

  • 한진구;현승균;전중환
    • 열처리공학회지
    • /
    • 제31권5호
    • /
    • pp.220-230
    • /
    • 2018
  • The objective of this study is to investigate the effect of solution treatment on the microstructure and corrosion behavior of cast AZ91-4%RE magnesium alloy. In the as-cast state, microstructure of the AZ91-4%RE alloy was characterized by intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_{11}RE_3$ and $Al_2RE$ phase particles distributed in ${\alpha}-(Mg)$ matrix. After solution treatment, the ${\beta}$ particles with low melting point dissolved into the matrix, but Al-RE phases still remained due to their high thermal stabilities. It was found from the immersion and potentiodynamic polarization tests that corrosion rate of the AZ91-4%RE alloy increased after the solution treatment. On the contrary, EIS tests and EDS compositional analyses on the surface corrosion products indicated that the stability of the corrosion product was improved after the solution treatment. Examinations on the corroded microstructures for the ascast and solution-treated samples revealed that dissolution of the ${\beta}$ particles which play a beneficial role in suppressing corrosion propagation, would be responsible for the deterioration of corrosion resistance after the solution treatment. This result implies that the microstructural features such as amount, size and distribution of secondary phases that determine corrosion mechanism, are more influential on the corrosion rate in comparison with the stability of surface corrosion product.

해양구조물용 RE36강의 용접부 부식거동에 관한 전기화학적 특성 연구 (An Electrochemical Property Stud on the Corrosion Behavior of Welding Part of RE36 Steel for Marine Structure)

  • 김성종;김진경;문경만
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.70-76
    • /
    • 2000
  • The effect of Post Weld Heat Treatment(PWHT) of RE36 steel for marine structure was investigated with parameters such as micro-vickers hardness, corrosion potential and corrosion current density of weld metal(WM), base metal(BM) and heat affected zone(HAZ), and both Al alloy anode generating current and Al alloy anode weight loss quantity etc. Hardness of post-weld heat treated BM, WM and HAZ is lower than that of As-welded condition of each region. However, hardness of HAZ was the highest among those three parts regardless of PWHT temperature and corrosion potential of WM was the highest among those three parts without regard to temperature and corrosion potential of WM was the highest among those three parts without regard to PWHT temperature. The amplitude of corrosion potential difference of each other three parts at PWHT temperature $550^{\circ}C$, $650^{\circ}C$ are smaller than that of three parts by As-welded condition and corrosion current density obtained by PWHT was also smaller than that of As-welded condition. Eventually, it was known that corrosion resistance was increased by PWHT. However both Al anode generating current and anode weight loss quantity were also decreased by PWHT compare to As-welded condition when RE36 steel is cathodically protected by Al anode. Therefore, it is suggested that the optimum PWHT temperature with increasing corrosion resistance and cathodic protection effect is $550^{\circ}C$.

  • PDF

해양구조물 RE36강의 용접부 부식거동 및 SSRT법에 의한 기계적 특성에 관한 연구 (A Study on the Corrosion Rehavior and Mechanical Property by SSRTTest of Welding Part of RE36 Steel for Marine Structure)

  • 김종성;김진경;김종호;이명훈;김영식;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.460-469
    • /
    • 2000
  • A study on the corrosion behavior of RE36 steel for marine structure was investigated with parameters such as micro-Vickers hardness, corrosion potential and corrosion current density measurement of weld metal(WM), base metal (BM) and heat affected zone(HAZ), Al anode generating current and Al anode weight loss quantity in case of cathodic protection. And we carried out slow strain rate test(SSRT) in order to research mechanical properties such as stress at maximum load, percent strain, time to fracture and strain to failure ratio etc and to find out limiting cathodic polarization potential for hydrogen embrittlement with applied cathodic polarization potential. Hardness of HAZ part was the highest among those three parts and also galvanic corrosion susceptibility was the highest in HAZ part among those three parts due to the lowest corrosion potential than other parts. However corrosion current density was the highest in WM part among those three parts. And the optimum cathodic polarization potential showing the best mechanical properties obtained by SSRT method with applied constant cathodic potential was from - 770mV to - 875mV(SCE). However it is suggested that limiting cathodic polarization potential indicating hydrogen embrittlement on the mechanical properties was under - 900mV(SCE).

  • PDF

오스테나이트 합금의 용융염부식 및 고온산화에 미치는 Si 농도와 RE 첨가의 영향 (Effect of Si Content and RE Addition on Molten Salt Corrosion and High Temperature Oxidation of the Austenite Alloys)

  • 조수행;장준선;오승철;신영준;박성원
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.3-9
    • /
    • 2002
  • The corrosion behavior of alloys in a molten salt was investigated along with the oxidation characteristics in the air. The basic composition of alloys in the study was Fe-25Ni-7Cr with Si and RE(rare-earth metal) as additives. The corrosion rate of the alloys was low in a molten salt of LiCl while the rate was high in the mixed molten salt of LiCl and $Li_2O$. When Si is added to the base alloy of Fe-25Ni-7Cr, corrosion resistance was improved as the Si content is increased up to 3%, however, it was observed that the corrosion resistance was getting worse as the Si content is increased. The base alloy with 2.43% of Si and 0.9% of RE(KSA-65), showed higher corrosion rate compared to that of KSA-63 alloy with an equivalent amount of only Si. The corrosion resistance of KSA-65 was similar to that of the base alloy(KSA-60). The oxidation resistance of KSA-65 alloy was greatly increased even at $850^{\circ}C$ for a long term exposure.

해양구조물용 RE36강 용접부의 부식거동 및 기계적 특성에 미치는 용접후 열처리 효과에 관한 연구 (A Study on the Post-Weld Heat Treatment Effect Affecting Corrosion Behavior and Mechanical Property of Welding Part of RE36 Steel for Marine Structure)

  • 김성종;문경만
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.65-74
    • /
    • 2001
  • A study on the corrosion behavior in case of As-welded and PWHT temperature 55$0^{\circ}C$ of welding part of RE36 steel for marine structure was investigated with parameters such as micro-Vickers hardness, corrosion potential measurement of weld metal(WM), base metal(BM) and heat affected zone(HAZ), both Al anode generating current and Al anode weight loss quantity under sacrificial anode cathodic protection conditions. And also we carried out slow strain rate test(SSRT) in order to research both limiting cathodic polarization potential for hydrogen embrittlement and optimum cathodic protection potential as well as mechanical properties by post-weld heat treatment(PWHT) effect. Hardness of HAZ was the highest among three parts(WM, BM and HAZ) and the highest galvanic corrosion susceptibility was HAZ. And the optimum cathodic polarization potential showing the best mechanical properties by SSRT method was from -770mV to -875mV(SCE). In analysis of SEM fractography, applied cathodic potential from -770mV to -875mV(SCE) it appeared dimple pattern with ductile fracture while it showed transgranular pattern (Q. C : quasicleavage) under -900mV(SCE). However it is suggested that limiting cathodic polarization potential indicating hydrogen embrittlement was under -900mV(SCE).

  • PDF

Influence of Retrogression and Re-aging on the Exfoliation Corrosion Behavior of AA 7085 Sheets

  • Krishnan, Ajay;Raja, V.S.;Mukhopadhyay, A.K.
    • Corrosion Science and Technology
    • /
    • 제15권4호
    • /
    • pp.159-165
    • /
    • 2016
  • An attempt has been made to understand the influence of retrogression and re-aging (RRA) on the exfoliation corrosion behaviour of AA 7085 alloy in comparison with the peak aged condition (PA). Immersion tests using ASTM G34 and studies involving electrochemical impedance spectroscopy showed that the RRA treated alloy provided higher resistance to exfoliation corrosion than the PA treated alloy. The improved resistance was attributed to the enhanced Cu content and the discontinuous nature of the grain boundary precipitate, which was revealed through transmission electron microscopy.

나트륨-물 반응에 의한 5Cr-1Mo Steel 시편의 부식특성 (Corrosion Characteristics of a 5Cr-1Mo Steel Specimen by Sodium-Water Reaction)

  • 정경채;정지영;박진호;황성태;김의식
    • 공업화학
    • /
    • 제9권7호
    • /
    • pp.1023-1029
    • /
    • 1998
  • 5Cr-1Mo steel을 이용하여 나트륨 분위기에서 미량 물 누출 실험을 수행하였다. 시편에서 미량 물 누출로 인한 누출경로의 완전 re-open time은 129분으로 나타났고, 그 크기는 직경 2mm를 나타냈다. 누출경로는 re-open되기 전에 누출부위를 중심으로 halos현상을 형성하였으며, halos의 크기와 실제 re-open크기와는 다르게 나타났다. 나트륨-물 반응으로 인한 재질의 부식은 나트륨부위로부터 시작되었으며, steam 부위에서는 부식이 발생하지 않았다. 시편 누출부위를 AES로 분석한 결과 Cr의 segregation이 가장 많이 나타났으며, SEM과 EPMA 관찰로부터 나트륨화합물들이 누출부위 주변에 대량 침적되어 있는 것이 관찰되어 나트륨 철 크롬혼합물 형태로 부식생성물들이 혼재되어 있는 것으로 예측되었다.

  • PDF

화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 장기 효과 (Long-Term Effect of Chemical Environments on FRP Reinforcing Bar for Concrete Reinforcement)

  • 박찬기;원종필;유정길
    • 콘크리트학회논문집
    • /
    • 제15권6호
    • /
    • pp.811-819
    • /
    • 2003
  • 철근의 부식은 철근콘크리트 구조물의 주요파괴 원인이다. 철근의 부식에 대한 문제점을 해결할 가능성이 있는 재료 중 FRP 보강근은 그 가능성이 높다. 그렇지만 FRP 보강근은 보강철근과 다른 파괴 매카니즘으로 의하여 현저하게 성능이 저하될 가능성을 가지고 있다. 이와 같은 환경에는 알칼리, 산, 염해 및 물과 수분 등이 있다. 따라서 본 연구에서는 FRP 보강근의 화학적 환경하에서의 내구성능을 평가하고자 하였으며 사용된 FRP 보강근은 2가지 종류의 CFRP 보강근 및 GFRP 보강근, 한가지 종류의 AFRP 보강근으로 알칼리용액, 산용액, 염해환경 및 중성용액에 노출시켰다. FRP 보강근의 역학적 특성 및 내구특성은 인장, 압축 및 전단시험을 통하여 평가하였으며 시험결과 FRP 보강근은 매우 혹독한 화학적 환경에서 우수한 내구성을 가지고 있음을 알 수 있었다.

콘크리트 보강용 FRP 리바의 개발 및 내구 특성 (Development and Durability Characteristics of FRP Reinforcing Bar for Concrete Structures)

  • 원종필;박찬기;윤종환;황금식;조용진
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.371-374
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. In this study, long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP- and GFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution, acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

  • PDF

콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성 (Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement)

  • 박찬기;원종필
    • 한국농공학회논문집
    • /
    • 제46권1호
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.