Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.349-352
/
2010
질의를 이용한 정보 검색 기술에서 단어 의미의 모호성에 의해 사용자가 검색 하고자 하는 주제 이외의 문서 까지 검색되고 있다. 이러한 문제는 모바일기기의 검색 환경에서 두드러진다. 모바일에서의 검색은 문서의 로딩속도가 느리며 작은 화면에 의해 스크롤이 잦다. 그러므로 원하는 검색 결과가 검색 첫 페이지 이외에 위치하거나, 또는 페이지 하단에 위치할 경우 검색 결과를 확인하는 대에 많은 시간과 노력이 필요하다. 이러한 문제를 해결하기위해선 단어 의미의 모호성을 해결하고 사용자가 검색하고자하는 주제의 검색결과를 검색 상위에 위치시킬 수 있는 방법을 필요로 한다. 이 연구에서는 연관 단어 추출과 TF*IDF를 이용하여, 검색결과를 re-ranking하는 방법을 제시한다.
Joung Lee;Mintaek Seo;Seung-Hoon Na;Minsoo Na;Maengsik Choi;Chunghee Lee
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.442-446
/
2022
자동 음성 인식(Automatic Speech Recognition) 혹은 Speech-to-Text(STT)는 컴퓨터가 사람이 말하는 음성 언어를 텍스트 데이터로 전환하는 일련의 처리나 기술 등을 일컫는다. 음성 인식 기술이 다양한 산업 전반에 걸쳐 적용됨에 따라 높은 수준의 정확도와 더불어 다양한 분야에 적용할 수 있는 음성 인식 기술에 대한 필요성이 점차 증대되고 있다. 다만 한국어 음성 인식의 경우 기존 선행 연구에 비해 예사말/높임말의 구분이나 어미, 조사 등의 인식에 어려움이 있어 음성 인식 결과 후처리를 통한 성능 개선이 중요하다. 따라서 본 논문에서는 N-Best 음성 인식 결과가 구성되었을 때 Re-ranking을 통해 한국어 음성 인식의 성능을 개선하는 모델을 제안한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.12
no.2
/
pp.69-76
/
2012
This paper proposes a novel way of personalized web search through re-ranking the search results with user profiles of concept-network structure. Basically, personalized search systems need to be based on user profiles that contain users' search patterns, and they actively use the user profiles in order to expand initial queries or to re-rank the search results. The proposed method is a sort of a re-ranking personalized search method integrated with query expansion facility. The method identifies some documents which occur commonly among a set of different search results from the expanded queries, and re-ranks the search results by the degree of co-occurring. We show that the proposed method outperforms the conventional ones by performing the empirical web search with a number of actual users who have diverse information needs and query intents.
Journal of the Korean Society for Library and Information Science
/
v.57
no.3
/
pp.249-277
/
2023
The purpose of this study is to explore the potential contribution of citation metrics to improving the search performance of citation index databases. To this end, the study generated ten queries in the field of library and information science and conducted experiments based on the relevance assessment using 3,467 documents retrieved from the Web of Science and 60,734 documents published in 85 SSCI journals in the field of library and information science from 2000 to 2021. The experiments included re-ranking of the top 100 search results using citation metrics and search methods, query expansion experiments using vector space model retrieval systems, and the construction of a citation-based re-ranking system. The results are as follows: 1) Re-ranking using citation metrics differed from Web of Science's performance, acting as independent metrics. 2) Combining query term frequencies and citation counts positively affected performance. 3) Query expansion generally improved performance compared to the vector space model baseline. 4) User-based query expansion outperformed system-based. 5) Combining citation counts with suitability documents affected ranking within top suitability documents.
When Web-based special retrieval systems for scientific field extremely restrict the expression of user's information request, the process of the information content analysis and that of the information acquisition become inconsistent. In this paper, we apply the fuzzy retrieval model to solve the high time complexity of the retrieval system by constructing a reduced term set for the term's relatively importance degree. Furthermore, we perform a cluster retrieval to reflect the user's Query exactly through the similarity relation matrix satisfying the characteristics of the fuzzy compatibility relation. We have proven the performance of a proposed re-ranking model based on the similarity union of the fuzzy retrieval model and the document cluster retrieval model.
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.1
/
pp.7-15
/
2014
Image retrieval has become a huge part of computer vision and data mining. Although commercial image retrieval systems such as Google show great performances, the improvement on the performances are constantly on demand because of the rapid growth of data on web space. To satisfy the demand, many re-ranking methods, which enhance the performances by reordering retrieved results with independent algorithms, has been proposed. Conventional re-ranking algorithms are based on the assumption that visual patterns are not used on initial image retrieval stage. However, image search engines in present have begun to use the visual and the assumption is required to be reconsidered. Also, though it is possible to suspect that integration of multiple retrieval systems can improve the overall performance, the research on the topic has not been done sufficiently. In this paper, we made the condition that other manner than cooperation cannot improve the ranking result. We evaluate the algorithm on toy model and show that propose module can improve the retrieval results.
The existing tag based system deducts a retrieval result with low accuracy through the usage of a single tag matching by using tags tagged in contents. And the system doesn't provide effectively contents related information which the tags have, as the users place tags on contents without considering the priority and associative relation between tags. For a solve of above problems, this paper suggests a tag ranking system which extracts semantic similarity between tags and re-ranks the tags tagged in contents. In order to evaluate the performance of suggested system, this paper experiments and compares the ranking result of this paper's tag ranking system with the result of baseline method using tags tagged in images and frequency method adapting tag co-appearance frequency.
Now a days, to make good use of tags is a general tendency when users need to upload or search some multimedia data such as images and videos on the Web. In this paper, we introduce an approach to calculate semantic importance of tags and to make re-ranking with them on tagged Web image retrieval. Generally, most photo images stored on the Web have lots of tags added with user's subjective judgements not by the importance of them. So they become the cause of precision rate decrease with simple matching of tags to a given query. Therefore, if we can select semantically important tags and employ them on the image search, the retrieval result would be enhanced. In this paper, we propose a method to make image retrieval re-ranking with the key tags which share more semantic information with a query or other tags based on Wikipedia-based semantic relatedness. With the semantic relatedness calculated by using huge on-line encyclopedia, Wikipedia, we found the superiority of our method in precision and recall rate as experimental results.
Journal of the Korea Society of Computer and Information
/
v.27
no.9
/
pp.59-68
/
2022
A recommender system covers users, searches the items or services which users will like, and let users purchase them. Because recommendations from a recommender system are predictions of users' preferences for the items which they do not purchase yet, it is rarely possible to be drawn a perfect answer. An evaluation has been conducted to determine whether a prediction is right or not. However, it can be lower user's satisfaction if a recommender system focuses on only the preferences, that is caused by a 'filter bubble effect'. The filter bubble effect is an algorithmic bias that skews or limits the information an individual user sees on the recommended list. It is the reason why multiple metrics are required to evaluate recommender systems, and a diversity metrics is mainly used for it. In this paper, we compare three different methods for enhancing diversity for personalized recommendation - bin packing, weighted random choice, greedy re-ranking - with a practical e-commerce data acquired from a fashion shopping mall. Besides, we present the difference between experimental results and F1 scores.
Question Answering (QA) services can provide exact answers to user questions written in natural language form. This research focuses on how to build a QA system for a specific domain area. Online and offline QA system architecture of targeted domain such as domain detection, question analysis, reasoning, information retrieval, filtering, answer extraction, re-ranking, and answer generation, as well as data preparation are presented herein. Test results with an official Frequently Asked Question (FAQ) set showed 68% accuracy of the top 1 and 77% accuracy of the top 5. The contribution of each part such as question analysis system, document search engine, knowledge graph engine and re-ranking module for achieving the final answer are also presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.