• 제목/요약/키워드: RdRc

검색결과 219건 처리시간 0.026초

Production of Red Ginseng Specific Ginsenosides $(Rg_2, Rg_3, Rh_1 and Rh_2)$ from Agrobacterium-transformed hairy Roots of Panax ginseng by Heat Treatment

  • Yang, Deok-Chun;Yang, Kye-Jin;Park, Yong-Eui
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.19-22
    • /
    • 2001
  • It was reported that Red ginseng contains specific ginsenoside-Rg$_2$,-Rg$_3$,-Rh$_1$and -Rh$_2$, which show various pharmacological effects. However, production of these specific ginsenosides from Red ginseng is not commercially applicable because of high cost of the raw material, roots. This work was carried out to examine the production of Red ginseng specific ginsenosides from Agrobacterium-transformed hairy roots. Hairy roots were induced from 3 year-old root segment of Korean ginseng (Panax ginseng C.A. Meyer) after infection with Agrobacterium rhizogenes A4. Among many lines of hairybroots, KGHR-8A was selected. Steam heat treatment of hairy roots was resulted in the changes of ginsenoside composition. Eleven ginsenosides were detected in heat-treated hairy roots but eight in freeze dried hairy roots. In heat treated hairy root, content of ginsenoside-Rb$_1$,Rb$_2$,Rc, Rd, Re, Rf, and Rg$_1$were decreased compared to those of freeze dried hairy roots. However, heat treatment strongly enhanced the amount of Red ginseng specific ginsenogides (ginsenoside-Rg$_2$,-Rg$_3$,-Rh$_1$and -Rh$_2$). Amounts of ginsenoside-Rg$_3$,-Rh$_1$and -Rh$_2$ in heat-treated hairy roots were 2.58, 3.62 and 1.08 mg/g dry wt, respectively, but these were detected as trace amount in hairy roots without heat treatment. Optimum condition of heat treatment for the production of Red ginseng specific ginsenoside was 2 h at 105$^{\circ}C$. This result represents that Red ginseng specific ginsenoside can be producted from hairy roots by steam heat treatment.

  • PDF

Inhibitory Effects of 12 Ginsenosides on the Activities of Seven Cytochromes P450 in Human Liver Microsomes

  • Jo, Jung Jae;Shrestha, Riya;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제7권4호
    • /
    • pp.106-110
    • /
    • 2016
  • Ginseng, a traditional herbal drug, has been used in Eastern Asia for more than 2000 years. Various ginsenosides, which are the major bioactive components of ginseng products, have been shown to exert numerous beneficial effects on the human body when co-administered with drugs. However, this may give rise to ginsenoside-drug interactions, which is an important research consideration. In this study, acassette assay was performed the inhibitory effects of 12 ginsenosides on seven cytochrome P450 (CYP) isoforms in human liver microsomes (HLMs) using LC-MS/MS to predict the herb-drug interaction. After incubation of the 12 ginsenosides with seven cocktail CYP probes, the generated specific metabolites were quantified by LC-MS/MS to determine their activities. Ginsenoside Rb1 and F2 showed strong selective inhibitory effect on CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP2B6-catalyzed bupropion hydroxylation, respectively. Ginsenosides Rd showed weak inhibitory effect on the activities of CYP2B6, 2C9, 2C19, 2D6, 3A4, and compound K, while ginsenoside Rg3 showed weak inhibitory effects on CYP2B6. Other ginsenosides, Rc, Rf, Rg1, Rh1, Rf, and Re did not show significant inhibitory effects on the activities of the seven CYPs in HLM. Owing to the poor absorption of ginsenosides after oral administration in vivo, ginsenosides may not have significant side effects caused by interaction with other drugs.

Ginsenoside 전환이 가능한 인삼 발효 미생물의 선별 (Screening for Ginseng-Fermenting Microorganisms Capable of Biotransforming Ginsenosides)

  • 김희규;김기연;차창준
    • 미생물학회지
    • /
    • 제43권2호
    • /
    • pp.142-146
    • /
    • 2007
  • 오래전부터 약재로서 이용되어온 인삼(Panax ginseng)은 그 효능이 과학적으로 밝혀지면서 세계적으로 관심의 대상이 되고 있다. 그러나, 서양삼에 비해 점차 뒤처지고 있는 우리나라의 인삼산업의 경쟁력 확보를 위해 기능성 식품으로서의 인삼개발이 필요한 실정이다. 발효인삼은 유용한 미생물을 probiotic으로서 공급할 수 있을 뿐 아니라, 미생물에 의해 인삼의 ginsenoside 성분이 특이적으로 전환되어 기능적으로 우수한 제품이 될 수 있다. 본 연구에서는 인삼분말만을 영양분으로 한 액체 배지에서 청국장에서 분리된 Bacillus 균주와 유산균의 생장능 및 인삼의 주요 ginsenoside의 전환능력을 알아보았다. 인삼 2.5% (w/v), 1% (w/v)의 인삼분말만을 영양분으로 한 액체배지에서 생장능과 발효 후 ginsenoside의 전환 여부를 확인하였다. 사용한 Bacillus 균주와 유산균 모두 인삼배지에서 $10^{7}\;CFU/ml$을 초과하는 생장능을 보였고, Bacillmus의 경우 ginsenoside $Rg_{1},\;Rb_{1},\;Rb_{2},\;Rc,\;Rd$간에 각 균주마다 특이적인 ginsenoside 전환 반응을 보였다. 따라서, 이 균주들은 발효인삼의 제조를 위한 접종균주로서 이용이 가능하리라 사료된다.

사방시공지 식물사회의 생태학적 변화에 관한 연구(V) - 사방시공 후 9~26년 간의 변화 - (Studies on the Ecological Change of the Plant Community in the Erosion-Controlled and Rehabilitated Areas - During 9~26 Years After Erosion Control Works -)

  • 이현규
    • 한국환경복원기술학회지
    • /
    • 제6권5호
    • /
    • pp.59-69
    • /
    • 2003
  • Most denuded mountain areas in Korea were completely stabilized by the successful work of the 1st and 2nd 10-year Forest Development Plans which targeted the reforestation of denuded forest lands. The objectives of this study are (1) to estimate the depth of organic horizon in the soil profile, (2) to investigate the change of vegetation structure, (3) to estimate the change of biomass in the erosion controlled and rehabilitated mountain areas with the passage of time. This study was carried out as the 5th times. The first study began in the year of 1985, the second study was in the year of 1988, the third study was in the year of 1992, 4th was in the year of 1998 and 5th was in the year of 2002. The first study started in the study sites which elapsed 9 years after erosion control works. The results of the study were as follows : The increase rate of soil thickness was estimated to $Y_{(cm)}=2.906log_{(yr)}-3.2476(r^2=0.917)$ during 26 years after erosion control works. The important value of pines decreased to 14.7% on upper layer. But, the important value of alders. which did not plant on erosion control work increased to 27.1%. The decrease of whole crown projection indicates that pines. and alders were heavily injured by pine leaf gall midge in the year of 1993, 1995 years and Agelastica coerulea Baly in the year of 1986, 1987 years at Yoju-gun. The young growth of pines and alders not appeared on the soil surface which elapsed 26 years after erosion control works. On the lower layer, oaks occupied over 50% in I.V, RD, RC, RF. In process of years, the increase of biomass estimated to be $Y_{(t/ha)}={0.7505X_{(yr)}}^{1.6335}\;(r^2=0.9712)$ for 26 years after erosion control works.

Comparison of Preparation Methods for the Quantification of Ginsenosides in Raw Korean Ginseng

  • Hong, Hee-Do;Sim, Eun-Mi;Kim, Kyung-Tack;Rho, Jeong-Hae;Rhee, Young-Kyung;Cho, Chang-Won
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.565-569
    • /
    • 2009
  • This study was conducted to evaluate the effects of different preparation methods on the recovery and quantification of ginsenosides in raw Korean ginseng (Panax ginseng C.A. Meyer). Eight major ginsenosides ($Rb_1$, $Rb_2$, $Rb_3$, Rc, Rd, Re, Rf, and $Rg_1$) were analyzed by high performance liquid chromatography (HPLC), after which the recovery and repeatability of the extraction of those ginsenosides using 3 different preparation methods were compared [A. direct extraction (DE) method, hot MeOH extraction/evaporation/direct dissolution; B. solid phase extraction (SPE) method, hot MeOH extraction/evaporation/dissolution/$C_{18}$ cartridge adsorption/MeOH elution; C. liquid-liquid extraction (LLE) method, hot MeOH extraction/evaporation/dissolution/n-BuOH fractionation]. Use of the DE method resulted in a significantly higher recovery of total ginsenosides than other methods and a relatively clear peak resolution. Use of the SPE and LLE methods resulted in clearer peak resolution, but lower ginsenoside recovery than the DE method. The LLE method showed the lowest ginsenoside recovery and repeatability among the 3 methods. Given that the DE method employed only extraction, evaporation, and a dissolution step (avoiding complicate and time consuming purification), this technique may be an effective method for the preparation and quantification of ginsenosides from raw Korean ginseng.

Improved antimicrobial effect of ginseng extract by heat transformation

  • Xue, Peng;Yao, Yang;Yang, Xiu-shi;Feng, Jia;Ren, Gui-xing
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.180-187
    • /
    • 2017
  • Background: The incidence of halitosis has a prevalence of 22-50% throughout the world and is generally caused by anaerobic oral microorganisms, such as Fusobacterium nucleatum, Clostridium perfringens, and Porphyromonas gingivalis. Previous investigations on the structure-activity relationships of ginsenosides have led to contrasting results. Particularly, the antibacterial activity of less polar ginsenosides against halitosis-related bacteria has not been reported. Methods: Crude saponins extracted from the Panax quinquefolius leaf-stem (AGS) were treated at $130^{\circ}C$ for 3 h to obtain heat-transformed saponins (HTS). Five ginsenoside-enriched fractions (HTS-1, HTS-2, HTS-3, HTS-4, and HTS-5) and less polar ginsenosides were separated by HP-20 resin absorption and HPLC, and the antimicrobial activity and mechanism were investigated. Results: HPLC with diode-array detection analysis revealed that heat treatment induced an extensive conversion of polar ginsenosides (-Rg1/Re, -Rc, -Rb2, and -Rd) to less polar compounds (-Rg2, -Rg3, -Rg6, -F4, -Rg5, and -Rk1). The antimicrobial assays showed that HTS, HTS-3, and HTS-4 were effective at inhibiting the growth of F. nucleatum, C. perfringens, and P. gingivalis. Ginsenosides-Rg5 showed the best antimicrobial activity against the three bacteria, with the lowest values of minimum inhibitory concentration and minimum bactericidal concentration. One major reason for this result is that less polar ginsenosides can more easily damage membrane integrity. Conclusion: The results indicated that the less polar ginsenoside-enriched fraction from heat transformation can be used as an antibacterial agent to control halitosis.

Gypenoside V로부터 minor ginsenosides의 생산 (Production of Minor Gisenosides from Gypenoside V)

  • 손나리;민진우;장미;김효연;전지나;양덕춘
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.20-20
    • /
    • 2010
  • Panax ginseng C.A Meyer is frequently taken orally as a traditional herbal medicine in Asian countries. The major components of ginseng are ginsenoside, which are pharmaceutical activity. The six major ginsenosides, including Rb1, Rb2, Rc, Rd, Re and Rg1 account for 90% of total ginsenosides. Even though the minor ginsenosides, including Rg3, Rh2 and compound K has high pharmacetical activities, the price of minor ginsenosides is too high. Therefore we isolated the gypenoside V and made it converted to minor ginsenosides. In the plant Gynostemma pentaphyllum Makino, gypenosdie V was presented as dominant saponin (content about 2.4%), and was similar to protopanaxadol type ginsenosides such as ginsenoside Rb1. In this study, we confirmed that the coversion of gypenoside V to minor ginsenosides after using the various treatment such as heating, acid treatment, commercial edible enzyme, and lactobacillus. Consequently, we optimizied the transformation of gypenoside V to minor ginsenoside using Thin Layer Chromatography (TLC), High Performance Liquid Chromatography (HPLC), Time-of-flight Mass Spectrometry (LC/TOF/MS).

  • PDF

Production of the Rare Ginsenoside Rh2-MIX (20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3) by Enzymatic Conversion Combined with Acid Treatment and Evaluation of Its Anti-Cancer Activity

  • Song, Bong-Kyu;Kim, Kyeng Min;Choi, Kang-Duk;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1233-1241
    • /
    • 2017
  • The ginsenoside Rh2 has strong anti-cancer, anti-inflammatory, and anti-diabetic effects. However, the application of ginsenoside Rh2 is restricted because of the small amounts found in Korean white and red ginsengs. To enhance the production of ginsenoside Rh2-MIX (comprising 20(S)-Rh2, 20(R)-Rh2, Rk2, and Rh3 as a 10-g unit) with high specificity, yield, and purity, a new combination of enzymatic conversion using the commercial enzyme Viscozyme L followed by acid treatment was developed. Viscozyme L treatment at pH 5.0 and $50^{\circ}C$ was used initially to transform the major ginsenosides Rb1, Rb2, Rc, and Rd into ginsenoside F2, followed by acid-heat treatment using citric acid 2% (w/v) at pH 2.0 and $121^{\circ}C$ for 15 min. Scale-up production in a 10-L jar fermenter, using 60 g of the protopanaxadiol-type ginsenoside mixture from ginseng roots, produced 24 g of ginsenoside Rh2-MIX. Using 2 g of Rh2-MIX, 131 mg of 20(S)-Rh2, 58 mg of 20(R)-Rh2, 47 mg of Rk2, and 26 mg of Rh3 were obtained at over 98% chromatographic purity. Then, the anti-cancer effect of the four purified ginsenosides was investigated on B16F10, MDA-MB-231, and HuH-7 cell lines. As a result, these four rare ginsenosides markedly inhibited the growth of the cancer cell lines. These results suggested that rare ginsenoside Rh2-MIX could be exploited to prepare an anti-cancer supplement in the functional food and pharmaceutical industries.

Changes in Chemical Composition of Korean Red Ginseng (Panax ginseng C.A. Meyer) Extract With Alcohol Extraction

  • Shin, Kwang-Soon;Oh, Sung-Hoon;Kim, Tae-Young;Yoon, Brian;Park, Sung-Sun;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • 제13권3호
    • /
    • pp.212-218
    • /
    • 2008
  • We extracted red ginseng with various alcohol concentrations and evaluated total carbohydrate, uronic acid, polyphenols compounds and ginsenoside contents, and yields of alcohol extract. The water extraction (0% alcohol extraction) showed a high level of total carbohydrate content. 10% and 20% alcohol extraction showed the highest uronic acid contents (7,978.8 and $7,872.7\;{\mu}g/mL$ of extract, respectively). The efficiency order of the red ginseng extract (RGE) preparations in liberating polyphenols was: $0{\sim}50%$ alcohol${\geq}\;60%$ alcohol> $70{\sim}90%$ alcohol. Solid contents in RGE were decreased with increased alcohol concentration; the same tendency as with the results of total carbohydrate content. Total ginsenoside contents in $20{\sim}50%$ alcohol extracts showed similar levels ($442,962.9{\sim}47,930.8\;{\mu}g/mL$ of extract). Water extraction showed the lowest ginsenoside content ($14,509.4\;{\mu}g/mL$ of extract). The ginsenoside contents at above 60% alcohol were decreased with increased alcohol concentration. Generally, ginsenoside (Rg2, Rg1, Rf, Re, Rd, Rb2, Rc and Rb1) contents were increased with increased alcohol concentrations. However, Rg3 content was decreased with increases in alcohol concentration.

Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies

  • Park, Jun Yeon;Choi, Pilju;Kim, Ho-kyong;Kang, Ki Sung;Ham, Jungyeob
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.62-67
    • /
    • 2016
  • Background: Ginseng, which is widely used in functional foods and as an herbal medicine, has been reported to reduce the proliferation of prostate cancer cells by mechanisms that are not yet fully understood. Methods: This study was designed to investigate the changes in ginsenoside content in ginseng after treatment with a microwave-irradiation thermal process and to verify the anticancer effects of the extracts. To confirm the anticancer effect of microwave-irradiated processed ginseng (MG), it was tested in three human prostate cancer cell lines (DU145, LNCaP, and PC-3 cells). Involvements of apoptosis and autophagy were assessed using Western blotting. Results: After microwave treatment, the content of ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rd in the extracts decreased, whereas the content of ginsenosides 20(S)-Rg3, 20(R)-Rg3, Rk1, and Rg5 increased. Antiproliferation results for the human cancer cell lines treated with ginseng extracts indicate that PC-3 cells treated with MG showed the highest activity with an half maximal inhibitory concentration of $48{\mu}g/mL$. We also showed that MG suppresses the growth of human prostate cancer cell xenografts in athymic nude mice as an in vivo model. This growth suppression by MG is associated with the inductions of cell death and autophagy. Conclusion: Therefore, heat processing by microwave irradiation is a useful method to enhance the anticancer effect of ginseng by increasing the content of ginsenosides Rg3, Rg5, and Rk1.