• Title/Summary/Keyword: RdRc

Search Result 219, Processing Time 0.028 seconds

Bioconversion of Ginsenosides from Red Ginseng Extract Using Candida allociferrii JNO301 Isolated from Meju

  • Lee, Sulhee;Lee, Yong-Hun;Park, Jung-Min;Bai, Dong-Hoon;Jang, Jae Kweon;Park, Young-Seo
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.368-375
    • /
    • 2014
  • Red ginseng (Panax ginseng), a Korean traditional medicinal plant, contains a variety of ginsenosides as major functional components. It is necessary to remove sugar moieties from the major ginsenosides, which have a lower absorption rate into the intestine, to obtain the aglycone form. To screen for microorganisms showing bioconversion activity for ginsenosides from red ginseng, 50 yeast strains were isolated from Korean traditional meju (a starter culture made with soybean and wheat flour for the fermentation of soybean paste). Twenty strains in which a black zone formed around the colony on esculin-yeast malt agar plates were screened first, and among them 5 strains having high ${\beta}$-glucosidase activity on p-nitrophenyl-${\beta}$-D-glucopyranoside as a substrate were then selected. Strain JNO301 was finally chosen as a bioconverting strain in this study on the basis of its high bioconversion activity for red ginseng extract as determined by thin-layer chromatography (TLC) analysis. The selected bioconversion strain was identified as Candida allociferrii JNO301 based on the nucleotide sequence analysis of the 18S rRNA gene. The optimum temperature and pH for the cell growth were $20{\sim}30^{\circ}C$ and pH 5~8, respectively. TLC analysis confirmed that C. allociferrii JNO301 converted ginsenoside Rb1 into Rd and then into F2, Rb2 into compound O, Rc into compound Mc1, and Rf into Rh1. Quantitative analysis using high-performance liquid chromatography showed that bioconversion of red ginseng extract resulted in an increase of 2.73, 3.32, 33.87, 16, and 5.48 fold in the concentration of Rd, F2, compound O, compound Mc1, and Rh1, respectively.

Effect of Nitrogen Phosphorus and Potassium on Ginsenoside Composition of Panax Ginseng Root Grown with Nutrient Solution (영양액재배 인삼근의 진세노사이드 조성에 미치는 N.P.K.의 영향)

  • Park, Hoon;Lee, Mee-Kyung;Lee, Chong-Hwa
    • Applied Biological Chemistry
    • /
    • v.29 no.1
    • /
    • pp.78-82
    • /
    • 1986
  • Panax ginseng seedlings were grown in vermiculite with nutrient solution different in nitrogen, phosphorus ana potassium level. Ginsenoside contents of root were investigated by high performance liquid chromatogram. Elimination or increase of one of N.P.K. increased or decreased total saponin content. Nitrogen was most effective (15.5% for-N to 8.9% for 3N) and potassium least. Similar trend was shown in each ginsenoside. According to coefficient of variation in one nutrient treatment or among all nutrient treatments ginsenoside Re was most insensitive to nutrient change and also other environmental factors and Rd most sensitive. Diol content (PD) was more variable than triol (PT) and variation of PT/PD was about half of them. Variation of ginsenoside content by nutrient change had no relation with the ginsenoside content. Similarity of ginsenoside pattern slightly decreased with the difference of saponin content by nutrient change. Root weight was significantly small only in tap water plot.

  • PDF

Effect of the Heating Treatment on the Stability of Saponin in White Geinseng (열처리(熱處理)가 인삼(人蔘)사포닌의 안정성(安定性)에 미치는 영향)

  • Sung, Hyun-Soon;Yang, Jae-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.1
    • /
    • pp.22-26
    • /
    • 1986
  • This investigation was carried out to study the effect of heating treatment on the saponin fractions in ginseng extract and crude saponin. The changes of saponin patterns and amounts were investigated using HPLC and compared with peak area of each fraction. Shape of crude saponin was changed more easy to compare with in ginseng extract. The more extracting temperature risen and treated time longer, the more changes of saponin amounts and patterns were shown, expecially at $100^{\circ}C$ over. All of the saponin fraction except ginsenoside-Rd were relatively unstable in heating treatment. Suitable extracting condition was extracted at $80^{\circ}C$ for 40 hours with $H_2O$.

  • PDF

Comparison of ginsenoside contents and antioxidant activity according to the size of ginseng sprout has produced in a plant factory (식물공장에서 생산된 새싹인삼의 크기에 따른 진세노사이드 함량 및 항산화 활성 비교)

  • Hwang, Seung Ha;Kim, Su Cheol;Seong, Jin A;Lee, Hee Yul;Cho, Du Yong;Kim, Min Ju;Jung, Jea Gack;Jeong, Eun Hye;Son, Ki-Ho;Cho, Kye Man
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.253-261
    • /
    • 2021
  • In this study, the ginseng sprout has produced through smart farm was classified according to its size and divided into above-ground (AG) and below-ground (BG) parts to compare ginsenoside contents and antioxidant activity. In the case of the AG part, the total phenolic contents were the highest at 5.16 mg/g in medium (M) size and the lowest at 2.23 mg/g in largest (L) size. The BG part also showed the highest content in the M size, but there was no significant difference. Also, the total flavonoid contents were also high in the M size in both the AG (5.16 mg/g) and BG (1.28 mg/g) parts. The major ginsenosides in the AG part were Re (20.33-24.15 mg/g) > Rd (11.36-27.42 mg/g) > Rg1 (4.48-5.54 mg/g) and the main ginsenosides in the BG part were Rb1 (5.09-8.61 mg/g) > Re (4.48-5.54 mg/g) > Rc (3.11-4.11 mg/g) in orders. In the case of M size, Re and Rd were approximately 4- and 19-folds higher at 24.15 mg/g and at 27.42 mg/g in the AG part and 5.20 mg/g and 1.43 mg in the BG part, respectively. In addition, F3 and Rh1 were detected in the AG part, but not in the BG part. 2,2-diphenyl-1-picrylhydrazyl (74.95%), 2,4,6-azino-bis (3-ethylbenzothiazoline-6-sulphnoic acid) diammonium salt (94.47%), and hydroxyl (70.39%) radical scavenging activities and FRAP (2.169) assay were the highest in M size than other sizes.

Effect of Harvest Date on Antioxidant of Dendranthema zawadskii var. latilobum (Maxim.) Kitam and D. zawadskii var. yezoense (Maek.) Y.M. Lee & H.J. Choi (구절초와 남구절초의 항산화 효과에 미치는 수확시기의 영향)

  • Woo, Jeong-Hyang;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.21 no.2
    • /
    • pp.128-133
    • /
    • 2008
  • This study was conducted to compare the antioxidative effects of Dendranthema zawadskii var. latilobum (Maxim.) Kitam and D. zawadskii var. yezoense (Maek.) Y.M. Lee & H.J. Choi due to the harvest date. Harvested samples at May 9th (early), July 17th (middle) and September 3rd (late stage) were extracted with 80% ethanol, and biological activities and antioxidant substance contents were detected. The earlier harvested samples showed the higher moisture contents and extraction yields. DPPH radical scavenging effect of early harvested D. zawadskii var. latilobum (Maxim.) Kitam ($RC_{50}$ = $0.128\;mg\;{\cdot}\;mL^{-1}$) was similar to BHT ($0.121\;mg\;{\cdot}\;mL^{-1}$). ABTS radical scavenging effects of both species harvested at early stage were higher than that of ascorbic acid which was well-known natural antioxidant. However, both species harvested at late stage showed the highest $Fe^{2+}$ chelating effect, but it was lower than that of EDTA. Total polyphenol and flavonoid contents of both species were higher when samples were harvested earlier stage. However, both species harvested at early stage contained more total polyphenols (79.93 and $75.10\;mg\;{\cdot}\;g^{-1}$) than flavonoids (57.84 and $54.91\;mg\;{\cdot}\;g^{-1}$).

Dynamic changes of multi-notoginseng stem-leaf ginsenosides in reaction with ginsenosidase type-I

  • Xiao, Yongkun;Liu, Chunying;Im, Wan-Teak;Chen, Shuang;Zuo, Kangze;Yu, Hongshan;Song, Jianguo;Xu, Longquan;Yi, Tea-Hoo;Jin, Fengxie
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.186-195
    • /
    • 2019
  • Background: Notoginseng stem-leaf (NGL) ginsenosides have not been well used. To improve their utilization, the biotransformation of NGL ginsenosides was studied using ginsenosidase type-I from Aspergillus niger g.848. Methods: NGL ginsenosides were reacted with a crude enzyme in the RAT-5D bioreactor, and the dynamic changes of multi-ginsenosides of NGL were recognized by HPLC. The reaction products were separated using a silica gel column and identified by HPLC and NMR. Results: All the NGL ginsenosides are protopanaxadiol-type ginsenosides; the main ginsenoside contents are 27.1% Rb3, 15.7% C-Mx1, 13.8% Rc, 11.1% Fc, 7.10% Fa, 6.44% C-Mc, 5.08% Rb2, and 4.31% Rb1. In the reaction of NGL ginsenosides with crude enzyme, the main reaction of Rb3 and C-Mx1 occurred through Rb3${\rightarrow}$C-Mx1${\rightarrow}$C-Mx; when reacted for 1 h, Rb3 decreased from 27.1% to 9.82 %, C-Mx1 increased from 15.5% to 32.3%, C-Mx was produced to 6.46%, finally into C-Mx and a small amount of C-K. When reacted for 1.5 h, all the Rb1, Rd, and Gyp17 were completely reacted, and the reaction intermediate F2 was produced to 8.25%, finally into C-K. The main reaction of Rc (13.8%) occurred through Rc${\rightarrow}$C-Mc1${\rightarrow}$C-Mc${\rightarrow}$C-K. The enzyme barely hydrolyzed the terminal xyloside on 3-O- or 20-O-sugar-moiety of the substrate; therefore, 9.43 g C-Mx, 6.85 g C-K, 4.50 g R7, and 4.71 g Fc (hardly separating from the substrate) were obtained from 50 g NGL ginsenosides by the crude enzyme reaction. Conclusion: Four monomer ginsenosides were successfully produced and separated from NGL ginsenosides by the enzyme reaction.

Vibration control parameters investigation of the Mega-Sub Controlled Structure System (MSCSS)

  • Limazie, Toi;Zhang, Xun'an;Wang, Xianjie
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.225-237
    • /
    • 2013
  • Excessive vibrations induced by earthquake excitation and wind load are an obstacle in design and construction of tall and super tall buildings. An innovative vibration control structure system (Mega-Sub Controlled Structure System-MSCSS) was recently proposed to further improve humans comfort and their safeties during natural disasters. Preliminary investigations were performed using a two dimensional equivalent simplified model, composed by 3 mega-stories. In this paper, a more reasonable and realistic scaled model is design to investigate the dynamical characteristics and controlling performances of this structure when subjected to strong earthquake motion. The control parameters of the structure system, such as the modulated sub-structures disposition; the damping coefficient ratio (RC); the stiffness ratio (RD); the mass ratio of the mega-structure and sub-structure (RM) are investigated and their optimal values (matched values) are obtained. The MSCSS is also compared with the so-called Mega-Sub Structure (MSS) regarding their displacement and acceleration responses when subjected to the same load conditions. Through the nonlinear time history analysis, the effectiveness and the feasibility of the proposed mega-sub controlled structure system (MSCSS) is demonstrated in reducing the displacement and acceleration responses and also improving human comfort under earthquake loads.

Quantitative Analysis of Ginsenosides in Red Ginseng Extracted under Various Temperature and Time (홍삼의 추출 시간 및 온도에 따른 Ginsenosides 함량 비교분석)

  • Yang, Byung-Wook;Han, Sung-Tai;Ko, Sung-Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.4 s.147
    • /
    • pp.217-220
    • /
    • 2006
  • This study compared the contents of ginsenoside according to the extract conditions of red ginseng to provide basic information for developing functional food using red ginseng. According to the result, the content of crude saponin was highest in 72 hours of extraction at $82^{\circ}C$ (RG-823). The content of prosapogenin (ginsenoside $Rh_1,\;Rh_2,\;Rg_2,\;Rg_3$) was highest in 48 hours of extraction, and followed by 72 and 24 hours at $82^{\circ}C$. And at $93^{\circ}C$ the prosapogenin contents were highest in the order of 48 hours, and next in 24 and 72 hours. In addition, ginsenoside $Rb_1,\;Rb_2$ Rc and Re were not detected in 72 hours of extraction at $93^{\circ}C$ (RG-933) presumedly due to hydrolysis, but ginsenoside Rd, Rf and $Rg_1$ were detected as long as 72 hours of extraction. These results show that protopanaxatriol group is relatively more resistant to heat than protopanaxadiol group.

The Action Mechanism of several Ginsenosides in their Regulatory Action on the ACtivities of Adenylate Cyclase and Guanylate Cyclase (몇가지 진세노시드들의 아데닐산 고리화 효소와 구아닐산 고리화 효소의 활동성들에 대한 조절작용에 있어서의 작용 메카니즘)

  • 서기림;문종건
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.148-155
    • /
    • 1983
  • The effects of the five ginsenosides on the activities of particulate adenylate cyclase and particulate guanylate cylase of rat brain have been studied. The range of concentrations of ginsenosides were between 10$\mu\textrm{g}$ and 500$\mu\textrm{g}$ per 500${mu}ell$ reaction mixture, Also, the effects of three ginsenosides on the activity of soluble guanylate cylace have been studied in the same range of concentrations as in particulate adenylate cyclase. Only ginsenoside Re has shown the reciprocal feeects when tested with particulated adenylate cyclase and particulate guanylated cyclase. Regulatory action of the several mononucleotides on the activities of adenylate cyclase and guanylate cyclase was examined. Ginsenoside Rd-inhibited adenylate cyclase was activated in great extent by the addition of increasing amount of GMP. On the other hand, ginsenoside Rc-activated guanylate cyclase was inhibited by the addition of increasing amount of AMP and GMP. The fact that the stimulatory action of GMP is observed only with particulated adenylate cyclase but not with soluble suanylate cyclase suggests that the action is membrane-related one. The competitive action was observed between ginsenoside Rb2 and dopamine in their binding to the receptors. This result is clear-cut evidence that the ginsenoside Rb2 binds specifically to $\beta$-adrenergic receptors.

  • PDF

Physico-Chemical and Microbiological Changes during Storage of Fresh Ginseng (수삼저장중 이화학적 및 기생물학적 변화)

  • 오훈일;노해원;도재호;김상달;홍순근
    • Journal of Ginseng Research
    • /
    • v.5 no.2
    • /
    • pp.99-107
    • /
    • 1981
  • Physical, chemical and microbiological changes were periodically studied during six-month storage of fresh ginseng under N2, CO2 gas or subatmospheric pressure condition. The results were summarized as follows. 1. The moisture contents of fresh ginseng gradually decreased during the first 2-month storage and thereafter generally reached at equillibrium. 2. There was no significant change in the reducing sugar content in 1-month storage, followed by$.$a decrease in between 2-and 3-month storage. Thereafter, the reducing sugar content increased at the end of 4-month storage. 3. The total sugar content increased significantly during the first 3-month storage. Under CO2 and Nr gas storage, the total sugar content gradually decreased after 3-month storage, while no significant change was observed in the samples stored under subatmospheric Pressure. Amylase activity gradually decreased as storage period increased 4. The content of saponin decreased as storage period increased, but ginsengoide Rf, Rd, Rc and Rb2 increased significantly in 1-month storage. 5. Regardless of storage methods, sprouting of ginseng and growth of microorganisms were inhibited in all samples during the first 4-month storage. However, growth of microorganisms was observed in the rhizome and injured areas of ginseng after 5-month storage in the N2 and CO2 gas atmosphere.

  • PDF