• Title/Summary/Keyword: Rb3

Search Result 935, Processing Time 0.029 seconds

Korean Red Ginseng and Rb1 facilitate remyelination after cuprizone diet-induced demyelination

  • Oh Wook Kwon;Dalnim Kim;Eugene Koh;Hyun-Jeong Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.319-328
    • /
    • 2023
  • Background: Demyelination has been observed in neurological disorders, motivating researchers to search for components for enhancing remyelination. Previously we found that Rb1, a major ginsenoside in Korean Red Ginseng (KRG), enhances myelin formation. However, it has not been studied whether Rb1 or KRG function in remyelination after demyelination in vivo. Methods: Mice were fed 0.2% cuprizone-containing chow for 5 weeks and returned to normal chow with daily oral injection of vehicle, KRG, or Rb1 for 3 weeks. Brain sections were stained with luxol fast blue (LFB) staining or immunohistochemistry. Primary oligodendrocyte or astrocyte cultures were subject to normal or stress condition with KRG or Rb1 treatment to measure gene expressions of myelin, endoplasmic reticulum (ER) stress, antioxidants and leukemia inhibitory factor (LIF). Results: Compared to the vehicle, KRG or Rb1 increased myelin levels at week 6.5 but not 8, when measured by the LFB+ or GST-pi+ area within the corpus callosum. The levels of oligodendrocyte precursor cells, astrocytes, and microglia were high at week 5, and reduced afterwards but not changed by KRG or Rb1. In primary oligodendrocyte cultures, KRG or Rb1 increased expression of myelin genes, ER stress markers, and antioxidants. Interestingly, under cuprizone treatment, elevated ER stress markers were counteracted by KRG or Rb1. Under rotenone treatment, reduced myelin gene expressions were recovered by Rb1. In primary astrocyte cultures, KRG or Rb1 decreased LIF expression. Conclusion: KRG and Rb1 may improve myelin regeneration during the remyelination phase in vivo, potentially by directly promoting myelin gene expression.

Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue

  • Chen, Weijie;Wang, Junlian;Luo, Yong;Wang, Tao;Li, Xiaochun;Li, Aiyun;Li, Jia;Liu, Kang;Liu, Baolin
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.351-358
    • /
    • 2016
  • Background: This study was designed to investigate whether ginsenoside Rb1 (Rb1) and compound K (CK) ameliorated insulin resistance by suppressing endoplasmic reticulum (ER) stress-induced inflammation in adipose tissue. Methods: To induce ER stress, epididymal adipose tissue from mice or differentiated 3T3 adipocytes were exposed to high glucose. The effects of Rb1 and CK on reactive oxygen species production, ER stress, TXNIP/NLRP3 inflammasome activation, inflammation, insulin signaling activation, and glucose uptake were detected by western blot, emzyme-linked immunosorbent assay, or fluorometry. Results: Rb1 and CK suppressed ER stress by dephosphorylation of $IRE1{\alpha}$ and PERK, thereby reducing TXNIP-associated NLRP3 inflammasome activation in adipose tissue. As a result, Rb1 and CK inhibited IL-$1{\beta}$ maturation and downstream inflammatory factor IL-6 secretion. Inflammatory molecules induced insulin resistance by upregulating phosphorylation of insulin receptor substrate-1 at serine residues and impairing insulin PI3K/Akt signaling, leading to decreased glucose uptake by adipocytes. Rb1 and CK reversed these changes by inhibiting ER stress-induced inflammation and ameliorating insulin resistance, thereby improving the insulin IRS-1/PI3K/Akt-signaling pathway in adipose tissue. Conclusion: Rb1 and CK inhibited inflammation and improved insulin signaling in adipose tissue by suppressing ER stress-associated NLRP3 inflammation activation. These findings offered novel insight into the mechanism by which Rb1 and CK ameliorate insulin resistance in adipose tissue.

Nuclear Magnetic Resonance Study of the Raman Spin-Phonon Processes in the Relaxation Mechanisms of Double Sulfate Li3Rb(SO4)2 Single Crystals

  • Heo, Cheol;Lim, Ae-Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.40-53
    • /
    • 2011
  • The NMR spectra of $Li_3Rb(SO_4)_2$ crystals and their relaxation processes were investigated by using $^7Li$ and $^{87}Rb$ NMR. The relaxation rates of the $^7Li$ and $^{87}Rb$ nuclei in the crystals were found to increase with increasing temperature, and can be described by the relation $T_1^{-1}{\propto}AT^2$. The dominant relaxation mechanism for these nuclei with electric quadrupole moments is provided by the coupling of these moments to the thermal fluctuations of the local electric field gradient via Raman spin-phonon processes.

Structure Analysis of Mixed Crystals, $LiK_{1-x}Rb_{x}SO_{4}(x=0.1,\;0.2)$ ($LiK_{1-x}Rb_{x}SO_{4}(x=0.1,\;0.2)$의 결정구조 분석)

  • Kim, Jin-Gyu;Kim, Youn-Joong;Kim, Hae-Jin;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2005
  • [ $LiK_{1-x}Rb_{x}SO_{4}(x=0.1,\;0.2)$ ] crystals were grown by means of aqueous solution growth technique at 313 K. Structure analysis of them was carried out with space group $P6_{3}(#173)$ by X-ray diffraction. In these compounds, the Li and $SO_{4}^{2-}$ ions lying on the three-fold axes formed infinite three-dimensional network and K and Rb atoms located on the six-fold axes are coordinated by twelve and fifteen O atoms respectively. The most suitable stabilization was achieved when the occupancy factors of K and Rb atoms are (0.91 : 0.09), (0.77 : 0.23) respectively.

Inhibitory Effects of Ginsenosides on Glutamate-Induced Swelling of Cultured Astrocytes

  • Seong, Yeon-Hee;Koh, Sang-Bum;Kim, Hack-Seang
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.138-142
    • /
    • 2000
  • Effects of ginsenosides (Rb$_1$, Rb$_2$, Rc, Re, Rg$_1$, Rf) on L-glutamate (glutamate)-induced swelling of cultured astrocytes from rat brain cerebral cortex were studied. Following the exposure to 0.5mM glutamate for 1 hr, the intracellular water space (as measured by [$^3$H]O-methyl-D-glucose uptake) of astrocytes increased by about two-fold. Simultaneous addition of ginsenosides Rb$_2$ and Rc with glutamate reduced the astrocytic swelling in a dose-dependent manner. These ginsenosides at 0.5 mg/ml did not affect the viability of astrocytes for up to 24 hr which was determined by a colorimetric assay (MTT assay) for cellular growth and survival. These ginsenosides at 0.3 mg/ml inhibited the increase of intracellular Ca$\^$2+/ concentration ([Ca$\^$2+/]$\_$i/) induced by glutamate. These data suggest ginsenosides Rb$_2$ and Rc prevent the cell swelling of astrocytes induced by glutamate, maybe via inhibition of Ca$\^$2+/ influx.

  • PDF

Protective effect of ginsenoside Rb1 against tacrolimus-induced apoptosis in renal proximal tubular LLC-PK1 cells

  • Lee, Dahae;Lee, Dong-Soo;Jung, Kiwon;Hwang, Gwi Seo;Lee, Hye Lim;Yamabe, Noriko;Lee, Hae-Jeong;Eom, Dae-Woon;Kim, Ki Hyun;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.75-80
    • /
    • 2018
  • Background: The aim of the present study was to evaluate the potential protective effects of six ginsenosides (Rb1, Rb2, Rc, Rd, Rg1, and Rg3) isolated from Panax ginseng against tacrolimus (FK506)-induced apoptosis in renal proximal tubular LLC-PK1 cells. Methods: LLC-PK1 cells were treated with FK506 and ginsenosides, and cell viability was measured. Protein expressions of mitogen-activated protein kinases, caspase-3, and kidney injury molecule-1 (KIM-1) were evaluated by Western blotting analyses. The number of apoptotic cells was measured using an image-based cytometric assay. Results: Reduction in cell viability by $60{\mu}M$ FK506 was ameliorated significantly by cotreatment with ginsenosides Rg1 and Rb1. The phosphorylation of p38, extracellular signal-regulated kinases, and KIM-1, and cleavage of caspase-3, increased markedly in LLC-PK1 cells treated with FK506 and significantly decreased after cotreatment with ginsenoside Rb1. The number of apoptotic cells decreased by 6.0% after cotreatment with ginsenoside Rb1 ($10{\mu}M$ and $50{\mu}M$). Conclusion: The antiapoptotic effects of ginsenoside Rb1 on FK506-induced apoptosis were mediated by the inhibition of mitogen-activated protein kinases and caspase activation.

Easy Red Ginseng Production Using Household Microwave Ovens (가정용 전자레인지를 이용한 간편 홍삼 제조)

  • Kim, Mi Hyun;Kim, Kyung Tack;Cho, Chang-Won;Rho, Jeonghae
    • Korean journal of food and cookery science
    • /
    • v.28 no.5
    • /
    • pp.623-628
    • /
    • 2012
  • The study was about to produce red ginsengs easily, using a household microwave oven to promote the consumption of fresh ginsengs in the home. Producing red ginsengs with a household microwave oven 'defrost function' takes 13 minutes (A), 'cook function' 6 minutes (B), and finally, 'defrost function' 44 minutes (C). For characteristics of microwave-produced red ginsengs, total saponin loss, color of powder, polyphenol content and saponin composition were compared with common red ginsengs. The color test for red ginseng powder showed that the color of household microwave-produced 6-minute cooked red ginseng (B) or 44-minute defrosted red ginseng (C) was closer to that of the common red ginsengs (E). The total saponin content in water eluted during red ginseng production showed that the saponin loss in microwave red ginseng was negligible compared to the common red ginsengs. Microwave red ginsengs showed no difference in phenol content that of the and higher total ginsenoside content than common red ginsengs. The ginsenoside $Rg_1$, Re, Rf, $Rg_2+Rh_1$, $Rb_1$, Rc, $Rb_2$, $Rb_3$, Rd and $Rg_3$ contents of microwave red ginsengs (A, B) were higher compared to that of the common red ginsengs; the ginsenoside Re, Rc, $Rb_2$, $Rb_3$, Rd and $Rg_3$ contents of 44-minute defrosted red ginseng (C) were higher compared to the common red ginsengs. It is considered that red ginseng production, using microwave oven at home, can be a fast and convenient way to produce highly functional red ginsengs with high ginsenoside content.

A Prospective Study of Lumbar Spinal Root Block (요추부 신경근 차단술의 추적조사)

  • Yoo, Byung-Hoon;Kim, Kyung-Tae;Kim, Young-Jin;Song, Chan-Woo;Hong, Kee-Hyek
    • The Korean Journal of Pain
    • /
    • v.10 no.1
    • /
    • pp.77-81
    • /
    • 1997
  • Background : We studied the effects of lumbar spinal root block (RB) prospectively in 21 patients who had suffered from low back pain with radiating pain even treated epidural steroid injection three times. Method : RB was performed under the fluoroscopic C-arm guide. When the needle was in correct position, we confirmed the needle placement and expected drug spreading by injection of contrast medium ($Isovist^{(R)}$-300, Sobering, Germany). Next 2% mepivacaine 1 ml mixed to 40 mg of Depomedrol was injected. Pain assessment was carried out 7 days after RB by numeric pain score regarding the pain just before RB was 10. Remained pain after RB was graded as excellent; 0-2, good; 3-5, bad; 6-8 and poor 9-10. Results : Mean age of the patients was 52.3 years. 38.1% and 47.6% of the patients showed excellent and goo dresults after RB, respectively. Conclusion : We concluded that RB is easy and safe procedure to perfirm and effective for the treatment of remnant pain following epidural steroid injection, especially in the patients who had spinal stenosis.

  • PDF

Ginsenoside Rb1 Modulates Level of Monoamine Neurotransmitters in Mice Frontal Cortex and Cerebellum in Response to Immobilization Stress

  • Lee, Sang-Hee;Hur, Jin-Young;Lee, Eun-Joo H.;Kim, Sun-Yeou
    • Biomolecules & Therapeutics
    • /
    • v.20 no.5
    • /
    • pp.482-486
    • /
    • 2012
  • Cerebral monoamines play important roles as neurotransmitters that are associated with various stressful stimuli. Some components such as ginsenosides (triterpenoidal glycosides derived from the Ginseng Radix) may interact with monoamine systems. The aim of this study was to determine whether ginsenoside Rb1 can modulate levels of the monoamines such as dihydroxyphenylalanine (DOPA), dopamine (DA), norepinephrine (NE), epinephrine (EP), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydorxytryptamine (5-HT), 5-hydroxindole-3-acetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP) in mice frontal cortex and cerebellum in response to immobilization stress. Mice were treated with ginsenoside Rb1 (10 mg/kg, oral) before a single 30 min immobilization stress. Acute immobilization stress resulted in elevation of monoamine levels in frontal cortex and cerebellum. Pretreatment with ginsenoside Rb1 attenuated the stress-induced changes in the levels of monoamines in each region. The present findings showed the anti-stress potential of ginsenoside Rb1 in relation to regulation effects on the cerebral monoaminergic systems. Therefore, the ginsenoside Rb1 may be a useful candidate for treating several brain symptoms related with stress.

Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848

  • Liu, Chun-Ying;Zhou, Rui-Xin;Sun, Chang-Kai;Jin, Ying-Hua;Yu, Hong-Shan;Zhang, Tian-Yang;Xu, Long-Quan;Jin, Feng-Xie
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.221-229
    • /
    • 2015
  • Background: Minor ginsenosides, those having low content in ginseng, have higher pharmacological activities. To obtain minor ginsenosides, the biotransformation of American ginseng protopanaxadiol (PPD)-ginsenoside was studied using special ginsenosidase type-I from Aspergillus niger g.848. Methods: DEAE (diethylaminoethyl)-cellulose and polyacrylamide gel electrophoresis were used in enzyme purification, thin-layer chromatography and high performance liquid chromatography (HPLC) were used in enzyme hydrolysis and kinetics; crude enzyme was used in minor ginsenoside preparation from PPD-ginsenoside; the products were separated with silica-gel-column, and recognized by HPLC and NMR (Nuclear Magnetic Resonance). Results: The enzyme molecular weight was 75 kDa; the enzyme firstly hydrolyzed the C-20 position 20-O-${\beta}$-D-Glc of ginsenoside Rb1, then the C-3 position 3-O-${\beta}$-D-Glc with the pathway $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}C-K$. However, the enzyme firstly hydrolyzed C-3 position 3-O-${\beta}$-D-Glc of ginsenoside Rb2 and Rc, finally hydrolyzed 20-O-L-Ara with the pathway $Rb2{\rightarrow}C-O{\rightarrow}C-Y{\rightarrow}C-K$, and $Rc{\rightarrow}C-Mc1{\rightarrow}C-Mc{\rightarrow}C-K$. According to enzyme kinetics, $K_m$ and $V_{max}$ of Michaelis-Menten equation, the enzyme reaction velocities on ginsenosides were Rb1 > Rb2 > Rc > Rd. However, the pure enzyme yield was only 3.1%, so crude enzyme was used for minor ginsenoside preparation. When the crude enzyme was reacted in 3% American ginseng PPD-ginsenoside (containing Rb1, Rb2, Rc, and Rd) at $45^{\circ}C$ and pH 5.0 for 18 h, the main products were minor ginsenosides C-Mc, C-Y, F2, and C-K; average molar yields were 43.7% for C-Mc from Rc, 42.4% for C-Y from Rb2, and 69.5% for F2 and C-K from Rb1 and Rd. Conclusion: Four monomer minor ginsenosides were successfully produced (at low-cost) from the PPD-ginsenosides using crude enzyme.