• 제목/요약/키워드: Rb1 gene

검색결과 98건 처리시간 0.023초

홍삼의 각 부위에서 추출된 Panaxadiol분획의 함량비에 따른 유해산소제거효소(Cu/Zn Superoxide Dismutase) 유도효과 (Effect of the Contents Ratio of Panaxadiol Ginsenosides Extracted from Various Compartment of Ginseng on the Transcription of Cu/Zn Superoxide Dismutase Gene)

  • 장문석;최강주;노현모
    • Journal of Ginseng Research
    • /
    • 제23권1호
    • /
    • pp.44-49
    • /
    • 1999
  • 유해산소제거효소는 세포내에서 생성되는 유해산소를 산소와 과산화 수소로 바꿈으로서 유해산소의 농도를 낮은 수준으로 유지하여 세포를 유해산소의 독성으로부터 보호하는 기능을 담당하고 있다. 이전의 연구에서 파낙사다이올(PD)와 진세노사이드 $Rb_2$가 전사조절인자 AP2를 유도하여 유해산소 제거효소의 전사조절부위 내의 AP2결합부위를 통해 유해산소제거효소의 함량증대를 유도함을 보고한 바 있다. 이를 토대로 본 연구에서는 인삼의 각부위에서 추출된 조사포닌으로 panaxadiol(PD)와 panaxatriol(PT)의 성분함유비가 다른 시료를 이용하여 이들이 유해산소제거효소의 발현 유도성에 미치는 영향을 조사하였다. 이를 조사하기위해 유해산소제거효소의 전사조절부위를 클로람페니콜 아세틸트란스퍼라제의 구조유전자와 융합시킨 벡터를 인간의 간세포에 도입하여 활성도를 측정하였다. 그 결과, PD 성분의 함량비증가에 비례적으로 유해산소제거효소의전사가 증대 되었다. 또한 동일한 결과로서, PD 대 PT의 함량비가 약 2.6으로 PD의 함량이 가장높은 세세미 (finely-hairy root) 추출분획에서 유해산소제거 효소의 전사촉진이 대조군에 비해 3배이상 촉진됨을 관찰할수 있었다. 이상의 결과는 PD계의 분획이 유해산소제거효소의 유도성효과를 나타냄을 시사하고 있으며, 유해산소제거효소의 유도물질로서 PD분획과 세세미 추출물이 유용하게 이용될수있음을 제시하고 있다.

  • PDF

Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2)

  • Park, Seong-Bum;Chun, Ju-Hyeon;Ban, Yong-Wook;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.47-54
    • /
    • 2016
  • Background: The roots of Panax ginseng contain noble tetracyclic triterpenoid saponins derived from dammarenediol-II. Dammarene-type ginsenosides are classified into the protopanaxadiol (PPD) and protopanaxatriol (PPT) groups based on their triterpene aglycone structures. Two cytochrome P450 (CYP) genes (CYP716A47 and CYP716A53v2) are critical for the production of PPD and PPT aglycones, respectively. CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes PPT production from PPD in P. ginseng. Methods: We constructed transgenic P. ginseng lines overexpressing or silencing (via RNA interference) the CYP716A53v2 gene and analyzed changes in their ginsenoside profiles. Result: Overexpression of CYP716A53v2 led to increased accumulation of CYP716A53v2 mRNA in all transgenic roots compared to nontransgenic roots. Conversely, silencing of CYP716A53v2 mRNA in RNAi transgenic roots resulted in reduced CYP716A53v2 transcription. HPLC analysis revealed that transgenic roots overexpressing CYP716A53v2 contained higher levels of PPT-group ginsenosides ($Rg_1$, Re, and Rf) but lower levels of PPD-group ginsenosides (Rb1, Rc, $Rb_2$, and Rd). By contrast, RNAi transgenic roots contained lower levels of PPT-group compounds and higher levels of PPD-group compounds. Conclusion: The production of PPD- and PPT-group ginsenosides can be altered by changing the expression of CYP716A53v2 in transgenic P. ginseng. The biological activities of PPD-group ginsenosides are known to differ from those of the PPT group. Thus, increasing or decreasing the levels of PPT-group ginsenosides in transgenic P. ginseng may yield new medicinal uses for transgenic P. ginseng.

Ginsenoside-Rb1 Acts as a Weak Estrogen Receptor Agonist Independent of Ligand Binding.

  • Park, Wan-Kyu;Jungyoon Cho;Lee, Young-Joo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.114-114
    • /
    • 2003
  • Ginseng is a medicinal herb widely used in Asian countries, and its pharmacological effects has been demonstrated in various systems such as cardiovascular, central nervous, and endocrine systems. Its effects are mainly attributed to the ginsenosides. We hypothesize that a component of Panax ginseng, ginsenoside-Rbl, acts by binding to estrogen receptor. We have investigated the estrogenic activity of ginsenoside-Rbl in a transient transfection system using estrogen receptors ${\alpha}$ or ${\beta}$ with estrogen -responsive luciferase plasmids in COS monkey kidney cells. Ginsenoside-Rbl activated both estrogen receptors ${\alpha}$ and ${\beta}$ in a dose-dependent manner (0.5 -100 M ). Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of ginsenoside-Rbl is estrogen receptor dependent. Next, we evaluated the ability of ginsenoside-Rbl to induce estrogen-responsive progesterone receptor gene by semi-quantitative RT-PCR assays. MCF-7 cells treated with l7${\beta}$-estradiol or ginsenoside- Rb1 exhibited an increased expression of progesterone receptor mRNA. However, ginsenoside-Rbl failed to displace the specific binding of [3H]17${\beta}$-estradiol to estrogen receptor in MCF-7 cells as examined by whole cell ligand binding assays, suggesting that there is no direct interaction of ginsenoside-Rbl with estrogen receptor. Our results indicate that estrogen-like activity of ginsenoside-Rbl is independent of direct estrogen receptor association.

  • PDF

DNA Microarray Analysis of Methylprednisolone Inducible Genes in the PC12 Cells

  • ;;;;권오유
    • 대한의생명과학회지
    • /
    • 제15권3호
    • /
    • pp.261-263
    • /
    • 2009
  • Methylprednisolone is a synthetic glucocorticoid which is usually taken intravenously for many neurosurgical diseases which cause edema including brain tumor, and trauma including spinal cord injury. Methylprednisolone reduces swelling and decreases the body's immune response. It is also used to treat many immune and allergic disorders, such as arthritis, lupus, psoriasis, asthma, ulcerative colitis, and Crohn's disease. To identify genes expressed during methylprednisolone treatment against neurons of rats (PC12 cells), DNA microarray method was used. We have isolated 2 gene groups (up- or down-regulated genes) which are methylprednisolone differentially expressed in neurons. Lipocalin 3 is the gene most significantly increased among 772 up-regulated genes (more than 2 fold over-expression) and Aristaless 3 is the gene most dramatically decreased among 959 down-regulated genes (more than 2 fold down-expression). The gene increased expression of Fgb, Thbd, Cfi, F3, Kngl, Serpinel, C3, Tnfrsf4 and Il8rb are involved stress-response gene, and Nfkbia, Casp7, Pik3rl, I11b, Unc5a, Tgfb2, Kitl and Fgf15 are strongly associated with development. Cell cycle associated genes (Mcm6, Ccnb2, Plk1, Ccnd1, E2f1, Cdc2a, Tgfa, Dusp6, Id3) and cell proliferation associated genes (Ccl2, Tnfsf13, Csf2, Kit, Pim1, Nr3c1, Chrm4, Fosl1, Spp1) are down-regulated more than 2 times by methylprednisolone treatment. Among the genes described above, 4 up-regulated genes are confirmed those expression by RT-PCR. We found that methylprednisolone is related to expression of many genes associated with stress response, development, cell cycle, and cell proliferation by DNA microarray analysis. However, We think further experimental molecular studies will be needed to figure out the exact biological function of various genes described above and the physiological change of neuronal cells by methylprednisolone. The resulting data will give the one of the good clues for understanding of methylprednisolone under molecular level in the neurons.

  • PDF

Association of Genetic Polymorphism of IL-2 Receptor Subunit and Tuberculosis Case

  • Lee, Sang-In;Jin, Hyun-Seok;Park, Sangjung
    • 대한의생명과학회지
    • /
    • 제24권2호
    • /
    • pp.94-101
    • /
    • 2018
  • Tuberculosis (TB) is infectious disease caused by Mycobacterium tuberculosis (MTB) infection. It is known that not only the property of microorganism but also the genetic susceptibility of infected patients is controlled. Interleukin 2 (IL-2) is a cytokine belonging to type 1 T helper (Th1) activity. In addition, IL-2, when infected with MTB, binds IL-2 receptor and promotes T cell replication and is involved in granuloma formation. The aim of this study was to investigate the genetic polymorphisms of the IL-2 receptor gene in tuberculosis patients and normal individuals. We analyzed 22 SNPs in three genes using the genotype data of 443 tuberculosis cases and 3,228 healthy controls from the Korea Association Resource for their correlation with tuberculosis case. IL2RA, IL2RB, and IL2RG genes were genotyped of 16, 4, and 2 SNPs, respectively. Among three genes, only IL2RA gene polymorphisms showed statistically significant association with tuberculosis case. 6 SNPs with high significance were identified in the IL2RA gene. In addition, the linkage disequilibrium (LD) structure of IL2RA gene was confirmed. SNP imputation of IL2RA gene was performed, it was confirmed that more SNPs were significant between case and control. If we look at the results of IL2RA gene analysis above, we can see that genetic polymorphism in the gene expressing $IL-2R{\alpha}$ will regulate the expression level of $IL-2R{\alpha}$, and the change in the immune system involved in $IL-2R{\alpha}$. In this study, genetic polymorphism that may affect host immunity suggests that susceptibility to tuberculosis may be controlled.

Cold-induced ginsenosides accumulation is associated with the alteration in DNA methylation and relative gene expression in perennial American ginseng (Panax quinquefolius L.) along with its plant growth and development process

  • Hao, Mengzhen;Zhou, Yuhang;Zhou, Jinhui;Zhang, Min;Yan, Kangjiao;Jiang, Sheng;Wang, Wenshui;Peng, Xiaoping;Zhou, San
    • Journal of Ginseng Research
    • /
    • 제44권5호
    • /
    • pp.747-755
    • /
    • 2020
  • Background: Ginsenosides accumulation responses to temperature are critical to quality formation in cold-dependent American ginseng. However, the studies on cold requirement mechanism relevant to ginsenosides have been limited in this species. Methods: Two experiments were carried out: one was a multivariate linear regression analysis between the ginsenosides accumulation and the environmental conditions of American ginseng from different sites of China and the other was a synchronous determination of ginsenosides accumulation, overall DNA methylation, and relative gene expression in different tissues during different developmental stages of American ginseng after experiencing different cold exposure duration treatments. Results: Results showed that the variation of the contents as well as the yields of total and individual ginsenosides Rg1, Re, and Rb1 in the roots were closely associated with environmental temperature conditions which implied that the cold environment plays a decisive role in the ginsenoside accumulation of American ginseng. Further results showed that there is a cyclically reversible dynamism between methylation and demethylation of DNA in the perennial American ginseng in response to temperature seasonality. And sufficient cold exposure duration in winter caused sufficient DNA demethylation in tender leaves in early spring and then accompanied the high expression of flowering gene PqFT in flowering stages and ginsenosides biosynthesis gene PqDDS in green berry stages successively, and finally, maximum ginsenosides accumulation occurred in the roots of American ginseng. Conclusion: We, therefore, hypothesized that cold-induced DNA methylation changes might regulate relative gene expression involving both plant development and plant secondary metabolites in such cold-dependent perennial plant species.

혈부축어탕(血府逐瘀湯) 자궁근종세포의 증식억제와 Apoptosis 관련 유전자 발현에 미치는 영향 (Effect of Hyulbuchukeotang on the Inhibition of Proliferation of Uterine leiomyoma cells and Cell apoptosis)

  • 문나영;백승희;김동철
    • 대한한방부인과학회지
    • /
    • 제19권2호
    • /
    • pp.186-198
    • /
    • 2006
  • Purpose : The purpose of this study is to demonstrate the direct inhibitory effect of Hyulbuchukeotang on the proliferation of uterine leiomyoma cells through an experiment treating uterine leiomyoma cells cultivated by explantation with indicated concentrations of Hyulbuchukeotang and to research the gene expression related to cell cycle ill order to discover the connection with apoptosis and its mechanism by analyzing cell cycle. Methods : After primary culture of uterine leiomyoma cells, the cultivated uterine leiomyoma cells were treated with indicated concentrations of Hyulbuchukeotang for 24 hours. The inhibitory effect on the cell proliferation was determined by the cell count assay. The value of a cell count assay represent the percentage of cells in a phase of the cell cycle compared with total cells. In addition, a link between Hyulbuchukeotang and apoptosis was examined through flow cytometric analysis by FACS and DNA fragmentation analysis. Finally, the degree of gene expression related to cell cycle was evaluated by Western blot analysis. Results : The inhibitory effect of Hyulbuchukeotang increase of uterine leiomyoma cells treated with indicated concentrations of Hyulbuchkeotang increases. The result of gene expression related to G1 phase after treating with 100, 250, 500, 1,000 ${\mu}g/ml$ concentrations of Hyulbuchukeotang. on uterine leiomyoma cells is that the gene expression of p27 was increased but that of p53 an p21 remained unchanged and the gene of pRB, pro-caspase 3 was decreased. Conclusion Through the mentioned experiments, it is demonstrated that Hyulbuchkeotang is effective in inhibiting Proliferation of uterine leiomyoma cells by extending cell cycle G1. However it is not considered that the inhibitory effect results from the aptoposis.

  • PDF

고 함량 트립토판 생산 GM 벼 개발 및 전사체 분석 (Development of high tryptophan GM rice and its transcriptome analysis)

  • 정유진;;조용구;강권규
    • Journal of Plant Biotechnology
    • /
    • 제42권3호
    • /
    • pp.186-195
    • /
    • 2015
  • Anthranilate synthase (AS)는 트립토판(Trp)과 indole-3-acetic acid, indole alkaloids의 생합성 경로에서 중요한 효소로 작용한다. 트립토판 생합성 상에서 feedback inhibition에 민감하게 반응하는 AS alpha-subunit 관련 OASA2 유전자 영역의 single (F124V) 및 double (S126F/L530D) 점돌연변이로 변형된 유전자의 재조합운반체를 작성하고 이들 유전자들을 Agrobacterium 방법으로 동진벼에 도입하여 형질전환체를 육성하였다. Single 및 double 돌연변이 OsASA2 유전자가 도입된 형질전환 벼 계통들은 nos gene probe를 이용한 TaqMan PCR 방법으로 single copy를 선발하였고, intergenic 계통을 선발하기 위해서 Bfa I 제한효소를 이용하여 RB와 LB 인접서열로부터 IPCR을 통한 FST 분석을 수행하여 4 개의 intergenic 계통을 선발하였다. 도입된 유전자의 발현으로 형질전환 벼는 Trp, IAN 및 IAA가 잎에 가장 많이 축적되었고, 종자의 트립토판 함량도 증가되었다. 후대에서 tryptophan 함량이 높은 S-TG와 D-TG의 두 호모 이벤트 계통을 육성하여 트립토판 함량을 분석한 결과 대조구에 비하여 13~30배 이상 높게 나타났으며, 유리아미노산의 함량도 증가하였다. 이벤트 계통을 이용하여 microarray 분석을 수행한 결과 세포 내 이온 수송, 영양분 공급 등에 영향을 주는 유전자군들이 up-regulation 되었고, 세포 내 기능유전자의 역할을 담당하는 조효소 등이 down-regulation 된 것을 확인 할 수 있었다. 이러한 결과는 선발된 두개의 상동성 이벤트 계통들이 고함량의 유리 트립토판 생산 벼의 육종에 효과적으로 이용될 수 있음을 보여준 결과로 생각된다.

항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과 (Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice)

  • 최윤정;민계식
    • 생명과학회지
    • /
    • 제29권1호
    • /
    • pp.105-111
    • /
    • 2019
  • Histone deacetylase (HDAC)-6은 전사조절 및 세포질 내 다양한 단백질들과의 상호작용을 통하여 난소암의 유발에 관여한다. 최근, HDAC-6을 표적으로 하는 특이적 억제제를 활용하여 암세포의 신호전달경로를 차단함으로써 새로운 항암제로서의 개발을 모색하고 있다. 특히, 난소암 치료를 위한 화학요법에서는 생식세포에 미치는 영향이 하나의 중요한 난제가 될 수 있다. 그러나, HDAC-6 억제제가 난소암세포 이외의 생식세포에 미치는 영향에 대한 연구는 아직 미흡한 실정이다. 따라서, 본 연구에서는 HDAC-6 억제제의 하나인 tubastatin A (TubA)가 생쥐의 난소 내 미성숙 난자에 미치는 영향을 RNA sequencing 분석을 통하여 검증하였다. 이러한 유전자 집합을 이용한 통계적 분석은 기존의 개별 유전자분석의 한계를 극복하여 대량의 생물학적 정보를 산출함으로써, 세포 내 신호전달경로와 같은 복잡한 생물학적 변화상태를 보다 더 광범위하고 민감하게 파악할 수 있을 뿐만 아니라 의미있는 결과의 도출에 도움을 줄 수 있다. Gene set enrichment analysis (GSEA) 결과, 세포주기와 감수분열의 조절 및 진행에 관여하는 gene sets의 발현이 germinal vesicle (GV)과 비교하여 TubA 처리군에서 대부분 감소되었다. 또한, ingenuity pathway analysis (IPA)를 통하여 TubA가 난모세포 내 p53 및 pRB의 발현을 증가시키고 CDK4/6 및 cyclin D의 발현을 감소시킬 뿐만 아니라, G2/M 단계의 DNA checkpoint 조절에 관여하는 유전자들의 발현을 증가시킴을 확인하였다. 이러한 결과는 TubA가 난소 내 미성숙 난자의 DNA 손상과 세포주기 관련 신호전달경로 유전자들의 발현변화를 유도함으로써, 세포주기의 중지와 세포사멸을 초래할 수 있음을 제시한다. 따라서, 특히 생식주기 이전의 난소암을 표적으로 하는 HDAC-6 억제제를 이용한 항암제의 개발에 있어 난소 내 미성숙 난자의 정상적인 성장과 발달을 위한 대안적 고려가 필요할 것으로 사료된다.

토종닭과 실용계에서 TYR 및 MC1R 유전자의 변이 분석 (Investigation of TYR and MC1R polymorphisms in Korean native chickens and the commercial chickens)

  • 허강녕;추효준;서보영;박미나;정기철;황보종;김학규;홍의철;서옥석;강보석
    • 농업과학연구
    • /
    • 제38권3호
    • /
    • pp.465-471
    • /
    • 2011
  • The commercial Korean native chickens (WR_CC) was developed by crossing a few native chicken breeds in Korea. In order to investigate the breed identification markers, SNPs from TYR gene and MC1R gene, which are associated with skin and feather colors respectively, were initially identified. In case of 3 identified SNPs in the TYR gene, yellow shank color was identified in Loss, Harvard, AA, RIR and CC, which have the fixed SNPs in most of the animals. On the other hand, SNP variations were observed in KNC_RB, C_B, WR_CC and HH_CC, which have the black, yellow and mixed color with black and yellow shank colors. Also, the investigation of 3 SNPs in the MC1R gene indicated that there were associations between shank and feather colors in RIR, SF, KNC_B, C_B and RIR. However, these results are not consistent among breeds. These SNP type inconsistencies within breeds suggested that the selection was performed based on the phenotypes, which is not include the genotype information. Thus, selection based on genetic information is required in the future.