• Title/Summary/Keyword: Rayleigh integral equation

Search Result 18, Processing Time 0.025 seconds

Numerical Simulation of Acoustic Radiation and Fluid/Structure Interaction Based on the Helmholtz Integral Equation (헬름홀쯔 적분 방정식에 기반을 둔 구조물의 음향방사 및 구조/음향 연성 수치해석)

  • Choi, Sung-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.8
    • /
    • pp.411-417
    • /
    • 2008
  • An alternative formulation of the Helmholtz integral equation derived to express the pressure field explicitly in terms of the velocity vector of a radiating surface is used to solve acoustic radiation and fluid/structure interaction problems. This formulation, derived for arbitrary sources, is similar in form to the Rayleigh's formula for planar sources. Because the surface pressure field is expressed explicitly as a surface integral of the surface velocity, which can be implemented numerically using standard Gaussian quadratures, there is no need to use BEM to solve a set of simultaneous equations for the surface pressure at the discretized nodes. Furthermore the non-uniqueness problem inherent in methods based on Helmholtz integral equation is avoided. Validation of this formulation is demonstrated for some simple geometries.

Effect of the Vibration Modes on the Radiation Sound for Plate (강판의 진동모드를 고려한 방사음 예측에 관한 연구)

  • Kim Chang-Nam;Byun Young-Su;Kim Jeong-Man;Kim Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • In order to compute the radiated sound from a vibrating structure, the Rayleigh's integral equation has to be derived from the Helmholtz equation using Green's function. Generally, the surface velocity in the Rayleigh's integral equation uses the root mean square(rms) velocity. The calculation value is too large, because it's not considered cancelation. On the other hand. using the complex velocity, the sound pressure is calculated too small, because it considers that sound is perfectly canceled out. Therefore, this thesis proposes a correction factor(CF) which considers vibration modes and the method by which to calculate the radiating sound pressure. The theoretical results are compared with the experimental values, and the proposed method can be verified with confluence.

Prediction of Delamination for Composite Laminates Using Sound Radiation (음향을 이용한 복합 적층판의 층간분리 예측)

  • Kim, Sung-Joon;Chae, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.800-804
    • /
    • 2005
  • In this paper, the radiated sound pressure induced by low velocity impact is obtained by solving the Rayleigh integral equation. For structurally radiated noise, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. It is well known that the presence of the delamination in a composite laminate introduces a local flexibility which changes the dynamic characteristic of the structure. The 2-D simplified delamination model is used to analyze the impact response. And the 3-D non-linear finite element model is developed using gap element to avoid the overlap and penetration between the upper and lower sub-laminates at delamination region. Predicted impact response using 2-D equivalent delamination model are compared with the numerical ones from the 3-D non-linear finite element model.

  • PDF

Estimation of damage for composite laminates using sound pressure (음압을 이용한 복합 적층판의 손상평가)

  • Kim, Sung-Joon;Lee, Sang-Wook;Chae, Dong-Chul;Kim, Sung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.503-507
    • /
    • 2004
  • The radiated sound pressure induced by low-velocity impact is obtained by solving the Rayleigh integral equation. This paper established the sound analysis procedure using impact analysis model. For structurally radiated noise, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. The impact response is computed using the spring-mass model. And the influence of damage on the sound pressure and impacted force history of laminated were investigated. The results show that both radiated sound pressure and impact force history are strongly influenced by damage on laminated.

  • PDF

An efficient method to predict the radiated pressure field from a vibrating structure (구조물의 방사음장을 계산하는 효율적인 방법)

  • 최성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1078-1082
    • /
    • 2001
  • An alternative formulation of the Helmholtz integral equation is derived to express the pressure field explicitly in terms of the velocity vector of a radiating surface. This formulation, derived for arbitrary sources, is similar in form to the Rayleigh's formula for planar sources. Because the pressure field is expressed explicitly as a surface integral of the particle velocity, which can be implemented numerically using standard Gaussian quadratures, there is no need to use Boundary element method to solve a set of simultaneous equations for the surface pressure at the discretized nodes. Furthermore the non-uniqueness problem inherent in methods based on Helmholtz integral equation is avoided. Validation of this formulation is demonstrated for some simple geometries.

  • PDF

AN EXTENSION OF THE BETA FUNCTION EXPRESSED AS A COMBINATION OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Marfaing, Olivier
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.183-197
    • /
    • 2021
  • Recently several authors have extended the Beta function by using its integral representation. However, in many cases no expression of these extended functions in terms of classic special functions is known. In the present paper, we introduce a further extension by defining a family of functions Gr,s : ℝ*+ → ℂ, with r, s ∈ ℂ and ℜ(r) > 0. For given r, s, we prove that this function satisfies a second-order linear differential equation with rational coefficients. Solving this ODE, we express Gr,s as a combination of confluent hypergeometric functions. From this we deduce a new integral relation satisfied by Tricomi's function. We then investigate additional specific properties of Gr,1 which take the form of new non trivial integral relations involving exponential and error functions. We discuss the connection between Gr,1 and Stokes' first problem (or Rayleigh problem) in fluid mechanics which consists in determining the flow created by the movement of an infinitely long plate. For $r{\in}{\frac{1}{2}}{\mathbb{N}}^*$, we find additional relations between Gr,1 and Hermite polynomials. In view of these results, we believe the family of extended beta functions Gr,s will find further applications in two directions: (i) for improving our knowledge of confluent hypergeometric functions and Tricomi's function, (ii) and for engineering and physics problems.

Flapwise and non-local bending vibration of the rotating beams

  • Mohammadnejad, Mehrdad;Saffari, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.229-244
    • /
    • 2019
  • Weak form integral equations are developed to investigate the flapwise bending vibration of the rotating beams. Rayleigh and Eringen nonlocal elasticity theories are used to investigate the rotatory inertia and Size-dependency effects on the flapwise bending vibration of the rotating cantilever beams, respectively. Through repetitive integrations, the governing partial differential equations are converted into weak form integral equations. The novelty of the presented approach is the approximation of the mode shape function by a power series which converts the equations into solvable one. Substitution of the power series into weak form integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of the non-trivial solution for resulting system of equations. Accuracy of the proposed method is verified through several numerical examples, in which the influence of the geometry properties, rotatory inertia, rotational speed, taper ratio and size-dependency are investigated on the natural frequencies of the rotating beam. Application of the weak form integral equations has made the solution simpler and shorter in the mathematical process. Presented relations can be used to obtain a close-form solution for quick calculation of the first five natural frequencies of the beams with flapwise vibration and non-local effects. The analysis results are compared with those obtained from other available published references.

A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams

  • Mohammadnejad, Mehrdad
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.655-674
    • /
    • 2015
  • In this paper, a new and simplified method is presented in which the natural frequencies of the uniform and non-uniform beams are calculated through simple mathematical relationships. The various vibration problems such as: Rayleigh beam under variable axial force, axial vibration of a bar with and without end discrete spring, torsional vibration of a bar with an attached mass moment of inertia, flexural vibration of the beam with laterally distributed elastic springs and also flexural vibration of the beam with effects of viscose damping are investigated. The governing differential equations are first obtained and then; according to a harmonic vibration, are converted into single variable equations in terms of location. Through repetitive integrations, the governing equations are converted into weak form integral equations. The mode shape functions of the vibration are approximated using a power series. Substitution of the power series into the integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of a non-trivial solution for system of equations. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained with those obtained from other published references and results of available finite element software.

Active Window system based on Finite Thickness Window Model (유한 두께 창문 모델을 적용한 능동 소음제어 창문)

  • Kwon, Byoung-Ho;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.763-768
    • /
    • 2012
  • Active window system which can reduce the environmental noises, such as traffic noise and construction noise, from an open window into a room was proposed in the previous works. The key idea of the proposed active window system was that the control sources are approximately collocated with the primary noise source in terms of the acoustic power for global noise reduction throughout the interior room. Moreover, because it is important not to intrude into the living space in the building environment, no error sensors were used and an open-loop control method using control sources at the window frame and the reference sensors outside the room was used for the proposed system. The open-loop control gain was calculated by the interior room model assumed as the semi-infinite space, and the interior sound field was estimated by Rayleigh integral equation under the baffled window model assumption. However, windows with a finite thickness should were considered for the calculation of the open-loop control gain of the active window system since these are representative of most window cases. Therefore, the finite thickness window model based on the Sgard's model was derived and the open-loop control gain using the interior sound field estimated by that model was calculated for active window system. To compare the performance of these two models, a scale-model experiment was performed in an anechoic chamber according to noise source directions. Experimental results showed that the performance for the thickness window model is better than the baffled window model as the angle with respect to the perpendicular direction is larger.

  • PDF

Derivation of Acoustic Target Strength Equation Considering Pulse Type of Acoustic Signal (펄스 타입의 음향신호를 고려한 음향표적강도 이론식 개발)

  • Kim, Ki-June;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.812-819
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. This research provides the time pattern of TS in time domain, which is applicable to pulse modulated acoustic pressure field. If the time pattern of TS is predicted by using TS equation in frequency domain, it takes long time and difficult since time function pulsed acoustic wave may be decomposed into their frequency domain components. But TS equation in time domain has a convenience. If the expression for pulsed acoustic field has been obtained, the problem can be solved. Furthermore this paper introduces about mathematical equivalence quantities between EM wave and Acoustic Wave.

  • PDF