• Title/Summary/Keyword: Rayleigh Number(Ra)

Search Result 63, Processing Time 0.023 seconds

NUMERICAL ANALYSIS FOR PRANDTL NUMBER DEPENDENCY ON NATURAL CONVECTION IN AN ENCLOSURE HAVING A VERTICAL THERMAL GRADIENT WITH A SQUARE INSULATOR INSIDE

  • Lee, Jae-Ryong;Park, Il-Seouk
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.283-296
    • /
    • 2012
  • The natural convection in a horizontal enclosure heated from the bottom wall, cooled at the top wall, and having a square adiabatic body in the center is studied. Three different Prandtl numbers (0.01, 0.7 and 7) are considered for the investigation of the effect of the Prandtl number on natural convection. Adiabatic boundary conditions are employed for the side walls. A two-dimensional solution for unsteady natural convection is obtained, using an accurate and efficient Chebyshev spectral methodology for different Rayleigh numbers varying over the range of $10_3$ to $10_6$. It had been experimentally reported that the heat transfer mode becomes oscillatory when Pr is out of a specific Pr band beyond the critical Ra. In this study, we reproduced this phenomenon numerically. It was found that when Ra=$10_6$, only the case for intermediate Pr (=0.7) reached a non-changing steady state and the low and high Pr number cases (Pr=0.01 and 7) showed a periodically oscillatory fashion hydrodynamically and thermally. The variation of time- and surface-averaged Nusselt numbers on the hot and cold walls for different Rayleigh numbers and Prandtl numbers are presented to show the overall heat transfer characteristics in the system. Further, the isotherms and streamline distributions are presented in detail to compare the physics related to their thermal behavior.

Double-Diffusive Convection Due to Heating from Below in a Rotating Cylindrical Cavity (회전하는 원통형밀폐용기내의 아랫면가열에 의한 이중확산대류에 관한 실험적 연구)

  • 강신형;이태홍;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1731-1740
    • /
    • 1995
  • Experimental investigations have been made to study the double-diffusive nature of convection of an initially stratified salt-water solution due to heating from below in a rotating cylindrical cavity. The objective is to examine the flow phenomena and the heat transfer characteristics according to the changes in temperature gradient, concentration gradient and rotating velocity of cavity. Thermal and solutal boundary conditions at side wall are adiabatic and impermeable, respectively. The top and bottom plate are maintained each at constant temperature and concentration. The cavity is put into a state of solid body rotation. Like the stationary case, the types of initially-formed flow pattern are classified into three regimes depending on the effective Rayleigh number and Taylor number; stagnant flow regime, single mixed-layer flow regime and successively formed multi-mixed layer flow regime. At the same effective Rayleigh number, the number of initially-formed mixed layer and its growth rate decrease as the effect of rotation increases. The temperature and concentration profiles are both uniform in each layer due to convective mixing in the layered-flow regime, but look both liner in stagnant flow regime and single mixed-layer flow regime. At the interface between adjacent layers, the temperature changes smoothly but the concentration changes rapidly.

Thermal Convection Between Two Horizontal Plates with Small Amplitude Non-Uniform Temperatures (작은 진폭의 불균일 온도를 갖는 두 수평 평판 사이에서의 열 대류)

  • Yoo Joo-Sik;Kim Yong-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.999-1005
    • /
    • 2004
  • Thermal convection between two horizontal walls kept at small amplitude nonuniform temperatures of the form, $T_L=T_1+a{\Delta}T$ sin kx and $T_U=T_2+b{\Delta}T\;sin(kx-{\beta})$ with a, $b{\ll}1$, is numerically investigated. When the Rayleigh number is small, an upright cell is formed between two walls at ${\beta}=0$; the cell is tilted at ${\beta}={\pi}/2$, and a flow with two-tier-structure cells occurs at ${\beta}={\pi}$. As the Rayleigh number is increased, Nusselt number increases smoothly for ${\beta}=0\;and\;{\pi}/2$, but increases rather steeply for ${\beta}={\pi}$ near the critical Rayleigh number ($Ra_c=1708$). When the wave number is small (k=0.5), multicellular convection occurs over one wave length, for all phase differences, and multiple solutions are found.

Natural Convection Heat Transfer with a Rectangular Obstruction in a square Enclosure (직사각형 전도성 장애물을 갖는 밀폐공간내에서의 자연대류)

  • Choo, H.L.;Kim, B.H.;Kim, H.W.;Jang, C.S.
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.123-135
    • /
    • 1998
  • The effect of the thermal conductivity of a centered, square, heat-conducting body on natural convection In a square enclosure was examined numerically. Numerical simulations was carried out for Pr=0.17, $Ra=1.0{\times}10^4,\;1.0{\times}10^5,\;1.0{\times}10^6$, $K^*$=1.0, 6.6, 34.0 and t=0.5, 1.0, 2.0. The results were reported in terms of streamlines, isotherms, Nusselt number. As the results, the mean Nusselt number increases with the increasing of ${\zeta}$ at a constant Ra and $K^*$. In the case of ${\zeta}=1.0$(obstruction shape ratio), the mean Nusselt numbers were decreased as increasing of $K^*$(obstruction thermal conductivity ratio) with regardless of the Rayleigh number. When the constant obstruction size and thermal conductivity ratio, convective heat transfer effect was more enhanced at ${\zeta}=2.0$ than ${\zeta}=0.5$.

  • PDF

Thermal Convection with Conducting Lid (전도체가 존재하는 자연대류 현상에 대한 수치적 유동 가시화)

  • Ha Man Yeong;Lee Jae Ryong;Balachandar S.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.117-120
    • /
    • 2005
  • This study of thermal convection uses the following geometry: a horizontal layer of fluid heated from below of solid lid at bottom and cooled from above. A variety range of thermal conductivity ratio, $\kappa$ is considered to investigate the interface temperature, $\theta_{i}$ between solid and fluid region. Periodic boundary conditions are employed in the horizontal direction to allow for lateral freedom for the convection cells. A two-dimensional solution for unsteady natural convection is obtained, using an accurate and efficient Chebyshev spectral multi-domain methodology, for different effective Rayleigh numbers, $Ra_{eff}$ varying over the range of $10^{4}\;to\;10^{7}$ in which the effective Rayleigh number is defined as $Ra{\times}<\overline{T}_{i}>$.

  • PDF

The Effect of the Prandtl Number on Natural Convection in a Square Enclosure with Inner Cylinder of Various Positions (Prandtl 수 변화가 다양한 위치의 원형실린더가 존재하는 정사각형 밀폐계 내부 자연대류 현상에 미치는 영향)

  • Seong, Seon Yu;Choi, Changyoung;Ha, Man Yeong;Yoon, Hyun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.943-950
    • /
    • 2014
  • This paper presents a numerical study conducted for analyzing the effect of the Prandtl number on natural convection in a square enclosure with an inner circular cylinder in various positons. Several Prandtl numbers (Pr = 0.1, 0.7, and 7) and Rayleigh numbers (Ra = $10^3$, $10^4$ and $10^5$) are considered in the numerical study, along with different positions of the inner circular cylinder. The position of the inner circular cylinder is changed in steps of 0.1 in the range of -0.2 to 0.2. The effect of the Prandtl number on natural convection in the enclosure is analyzed on the basis of the thermal and flow fields and the distribution of the Nusselt number. Regardless of the position of the cylinder, when the Rayleigh number is $10^5$, the surface-averaged Nusselt number of the inner cylinder and the enclosure increases as the Prandtl number increases.

NUMERICAL STUDY ON NATURAL CONVECTION IN A CUBICAL-CAVITY WITH A DIAMOND-TYPE ORIENTATION : Ra = $1{\times}10^5$ (다이아몬드형태의 3차원 캐비티내 자연대류 유동에 관한 수치적 연구 : Ra = $1{\times}105$)

  • Kim, J.E.;Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.83-88
    • /
    • 2006
  • Natural convection flows in a cubical air-filled cavity that has one pair of opposing faces isothermal at different temperatures, $T_h\;and\;T_c$ respectively, the remaining four faces having a linear variation from $T_c\;to\;T_h$ are numerically simulated by a solution code(PowerCFD) using unstructured cell-centered method. An extension to a previously published work, special attention of this work is paid to three-dimensional flow and thermal characteristics in nature convection according to new orientation at Ra= $1{\times}105$. Comparisons of the average Nusselt number at the cold face are made with benchmark solutions and experimental results found in the literature. It is demonstrated that the average Nusselt number on the cold face has a maximum value around the diamond-type inclination angle of $43.2^{\circ}\;at\;Ra=1{\times}105$. We also report the effect of new orientation on the type of flow and temperature structure in a cubical-cavity.

  • PDF

Natural Convection in the Annulus between Horizontal Non-Circular Cylinders (수평 비원형이중관 사이의 환상공간에서의 자연대류)

  • Bai, D.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.305-312
    • /
    • 1989
  • Laminal natural convection heat transfer in the annulus between isothermal horizontal non-circular cylinders is studied by solving the Navier-Stokes and energy equation using an elliptic numerical procedure. Results are obtained to determine the effects of the diameter ratio($D_o/D_i$) and Rayleigh number on heat transfer. The diameter ratio is varied from 1.5 to 13.0 at Pr=0.7, H/L=1.5 and $10^3{\leqslant}Ra_L{\leqslant}4{\times}10^4$. It is found that the diameter ratio causes a more significant on the local heat transfer coefficient of lower semi-circular cylinder and plate than upper semi-circular cylinder. The mean Nusselt number increases as the diameter ratio and Rayleigh number increase, and is higher than that of the circular annulus with a same wetted perimeter.

  • PDF

The natural convection in a three dimensional enclosure using color capturing technique and computation (색상 포착 기법과 수치계산을 이용한 3차원 밀폐 공간내의 자연대류 연구)

  • Lee, Gi-Baek;Kim, Tae-Yeong;Yang, Jang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1595-1607
    • /
    • 1997
  • The natural convection of a horizontal layer heated from below in a three-dimensional rectangular enclosure was dealt with both numerically and experimentally. The aspect ratios are 1:2:3.5 and Boussinesq fluid is water with the Prandtl number of 5.0. This experimental study showed how to measure the variation of temperature field in a 3-D rectangular enclosure with small aspect ratios by using TLC(Thermochromic Liquid Crystal) and color capturing technique. The experimental temperature field had periodic characteristics of 75 sec at Ra=2.37*10$^{5}$ . But the numerical convection flow had periodic characteristics of 79 sec at the same Rayleigh number. In three dimensional computation it was found that the convection roll structure bifurcated from four rolls to two rolls as the Rayleigh number is increased.

Effects of Double-diffusive Convection on the Mass Transport of Copper Ions in a Horizontal Porous Layer (수평 다공성유체층에서 이온의 물질전달에 대한 이중확산대류 효과)

  • Yoon Do-Young;Kim Min Chan;Choi Chang Kyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 1999
  • In the present study, buoyant force and its stabilizing effects in an electrostatic field were examined systematically in order to reduce the effect of natural convection with thermal stratification in a horizontal fluid-saturated porous layer. The correlation of ionic mass transport induced by double-diffusive convection in a horizontal porous layer has been derived theoretically. And the theoretical model was examined by electrochemical experiments. The theoretical correlation for mass transport which is satisfying Forchheimer's flow equation and based on the micro-turbulence model is derived as a function of soltual Darcy-Rayleigh number, thermal Darcy-Rayleigh number and Lewis number. In the experiment, the mass transport of copper ions in $CuSO_4-H_2SO_4$ solution is measured by electrochemical technique. By assembling theoretical correlation and experimental results, the mass transport correlation induced by double-diffusive convection is proposed as $$Sh=\frac{0.03054(Rs_D-LeRa_D)^{1/2}}{1-3.8788(Rs_D-LeRa_D)^{-1/10}}$$ The present correlation looks flirty reasonable with comparing experimental results, and very promising for the applications of its prototype into various systems involving heat transfer as well as mass transfer, in order to control the effects of natural convection effectively.