• Title/Summary/Keyword: Rayleigh Index

Search Result 43, Processing Time 0.028 seconds

Efficient QEGT Codebook Searching Technique for a MISO Beamforming System (MISO 빔포밍 시스템에서 효율적인 QEGT 코드북 탐색 기법)

  • Park, Noe-Yoon;Kim, Young-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1209-1216
    • /
    • 2009
  • This paper presents an efficient Quantized Equal Gain Transmission(QEGT) codebook index searching technique for MISO beamforming system in a Rayleigh flat fading channel. The searching time for the optimum weight vector among the codebook vectors increases exponentially when the codebook size increases linearly, although the bit error rate decreases. So, newly defined simple metric is proposed for fast searching, which determines a few candidates. Then the conventional method combined with accurate search algorithm selects the optimal index. This strategy significantly reduces the overall search time, while maintaining almost the same bit error rate performance. Furthermore, as the codebook size increases, the search time is considerably decreased compared to that of the conventional approach.

Performance of Closed-loop Transmit Antenna Diversity System with Sub-optimal Beam-forming and Fading Corrrelation (준 최적 빔 형성과 페이딩 상관을 갖는 송신 안테나 다이버시티 시스템의 성능)

  • Kim, Nam-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.1-7
    • /
    • 2004
  • The effect of the sub-optimal beam-forming and the fading channel correlation on the closed loop transmit antenna diversity(CTD) system is investigated in frequency flat Rayleigh fading channels. The fast channel fading prevents the perfect channel estimation at a mobile station, hence the imperfect weight is applied to the antenna branch of transmitter. The weight causes sub-optimalbeam-forming and aggravates the performance of CTD system. The fading correlation or a wireless channel also is one of the factors decreasing the diversity gain. A bit error rate expression for the CTD system is analytically derived as a function of the channel estimation error, the channel correlation coefficient the feedback delay, and fading index. It is shown that the channel estimation error gives more severe effect to the system performance than the channel correlation.

system performance with different fiber structures in Raman ampliffer (라만 증폭기에서 광섬유 구조에 따른 성능 분석)

  • 박재형;민범기;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • We examine the performance of a Raman amplifier as a function of fiber structure with respect to amplifier gain and double Rayleigh crosstalk penalty. Variations on fiber core radius or index affect both the Raman gain efficiency and Rayleigh backscattering. Contrary to the common concept, the penalty from the doubly amplified Rayleigh scattering could exceed the benefits of higher gain efficiency of small effective area fibers. Appropriate fiber designing parameters are required to increase Raman amplifier efficiency without system penalties. lties.

  • PDF

A simplified directly determination of natural frequencies of CNT: Via aspect ratio

  • Banoqitah, Essam Mohammed;Hussain, Muzamal;Khadimallah, Mohamed A.;Ghandourah, Emad;Yahya, Ahmad;Basha, Muhammad;Alshoaibi, Adil
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.207-216
    • /
    • 2022
  • In this paper, a novel model is developed for frequency behavior of single walled carbon nanotubes. The governing equation of motion is constructed method based on the Sander theory using Rayleigh-Ritz's method The frequencies enhances on increasing the power law index using simply supported, clamped and clamped free end conditions. The frequency curve for C-F is less than other conditions. It is due to the physical constraints which are applied on the edge of the CNT. It is observed that the C-F boundary condition have less frequencies from the other two conditions. The frequency phenomena for zigzag are insignificant throughout the aspect ratio. Moreover when index of power law is increased then frequencies increases for all boundary conditions. The natural frequency mechanism for the armchair (10, 10) for various values of power law index with different boundary conditions is investigated. Here frequencies decrease on increases the aspect ratio for all boundary conditions. The frequency curves of SS-SS edge condition is composed between the C-C and C-F conditions. The curves of frequency are less significant from small aspect ratio (L/d = 4.86 ~ 8.47) and decreases fast for greater ratios. It is found that the frequencies via aspect ratios, armchair (10, 10) have higher values from zigzag (10, 0). It is due to the material structure which is made by the carbon nanotubes. The power law index have momentous effect on the vibration of single walled carbon nanotubes. The present frequency result is also compared numerically experimentally with Raman Spectroscopy.

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

High Frequency Oscillations and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소실험에서의 고주파수 진동과 저주파수 연소불안정)

  • Chae, Heesang;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1021-1027
    • /
    • 2018
  • Experimental studies have been conducted to verify that the positive coupling between pressure oscillation (p') and combustion oscillation (q') of high frequency range is a prerequisite for the initiation of low frequency instability in hybrid rocket combustion. The post-chamber length and combustion equivalence ratio were selected as critical parameters to control the phase difference between p' and q', and p' amplitude in relation to the suppression of LFI. In the results, even if the post-chamber length increases, the phase difference between p' and q' maintains below pi/2, which is a necessary condition for the LFI development, but the amplification of RI (Rayleigh index) was substantially decreased leading to a stable combustion. In addition, results confirmed that combustion stability is achieved by changing the momentary equivalence ratio and/or by suppressing the positive coupling status of p' and q'. Thus, the periodic amplification of RI was identified as the middle path of the mechanism of occurrence of LFI.

The Evaluation of Seakeeping Performance of a Ship in Waves (선박의 파흔중 내항성능평가에 관한 연구)

  • 김순갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.1
    • /
    • pp.67-91
    • /
    • 1987
  • In this paper, a synthetic method for evaluating the seakeeping performance of a ship in waves is studied. For the prediction and evaluation of irregular phenomena to be correlated each other, the multi-dimensional Rayleigh's joint probability density function and the cumulative distribution function are approximated. According to this approximated function, it is able to calculate easily the occurrence probability of the factors on seakeeping performance. We proposed an evaluation method and an index to be defined by the seakeeping performance reliability, that is considered as the dangerousness and the relative dangerousness of the factors on seakeeping performance in waves. The use of this method aid index will be effective to install the sensors which are necessary to evaluate the states of ships at sea. Some example of the calculations by this method for 175m length single screw container ship equipped with diesel engine are also presented.

  • PDF

Non-destructive assessment of carbonation in concrete using the ultrasonic test: Influenced parameters

  • Javad Royaei;Fatemeh Nouban;Kabir Sadeghi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.301-308
    • /
    • 2024
  • Concrete carbonation is a continuous and slow process from the outside to the inside, in which its penetration slows down with the increased depth of carbonation. In this paper, the results of the evaluation of the measurement of concrete carbonation depth using a non-destructive ultrasonic testing method are presented. According to the results, the relative nonlinear parameter caused more sensitivity in carbonation changes compared to Rayleigh's fuzzy velocity. Thus, the acoustic nonlinear parameter is expected to be applied as a quantitative index to recognize carbonation effects. In this research, combo diagrams were developed based on the results of ultrasonic testing and the experiment to determine carbonation depth using a phenolphthalein solution, which could be considered as instructions in the projects involving non-destructive ultrasonic test methods. The minimum and maximum accuracy of this method were 89% and 97%, respectively, which is a reasonable range for operational projects. From the analysis performed, some useful expressions are found by applying the regression analysis for the nonlinearity index and the carbonation penetration depth values as a guideline.

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Generalized Distributed Multiple Turbo Coded Cooperative Differential Spatial Modulation

  • Jiangli Zeng;Sanya Liu;Hui Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.999-1021
    • /
    • 2023
  • Differential spatial modulation uses the antenna index to transmit information, which improves the spectral efficiency, and completely bypasses any channel side information in the recommended setting. A generalized distributed multiple turbo coded-cooperative differential spatial modulation based on distributed multiple turbo code is put forward and its performances in Rayleigh fading channels is analyzed. The generalized distributed multiple turbo coded-cooperative differential spatial modulation scheme is a coded-cooperation communication scheme, in which we proposed a new joint parallel iterative decoding method. Moreover, the code matched interleaver is considered to be the best choice for the generalized multiple turbo coded-cooperative differential spatial modulation schemes, which is the key factor of turbo code. Monte Carlo simulated results show that the proposed cooperative differential spatial modulation scheme is better than the corresponding non-cooperative scheme over Rayleigh fading channels in multiple input and output communication system under the same conditions. In addition, the simulation results show that the code matched interleaver scheme gets a better diversity gain as compared to the random interleaver.