• 제목/요약/키워드: Rayleigh Damping

검색결과 62건 처리시간 0.023초

스페이서 강성과 간격이 송전선 갤러핑에 미치는 영향분석 (Effect Analysis of Spacer Stiffness and Interval on Galloping of Power Transmission Lines)

  • 오윤지;손정현
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.52-58
    • /
    • 2019
  • Due to icing and snow, power transmission lines have asymmetric cross sections, and their motion becomes unstable. At this time, the vibration caused by the wind is called galloping. If galloping is continuous, short circuits or ground faults may occur. It is possible to prevent galloping by installing spacers between transmission lines. In this study, the transmission line is modeled as a mass-spring-damper system by using RecurDyn. To analyze the dynamic behavior of the transmission line, the damping coefficient is derived from the free vibration test of the transmission line and Rayleigh damping theory. The drag and lift coefficient for modeling the wind load are calculated from the flow analysis by using ANSYS Fluent. Galloping simulations according to spacer stiffness and interval are carried out. It is found that when the stiffness is 100 N/m and the interval around the support is dense, the galloping phenomenon is reduced the most.

유체에 잠긴 다공 직사각평판의 고유진동 해석 (Free Vibration Analysis of Perforated Rectangular Plates Submerged in Fluid)

  • 유계형;권대규;정경훈;이성철
    • 한국안전학회지
    • /
    • 제18권1호
    • /
    • pp.19-27
    • /
    • 2003
  • This paper presented an experimental modal analysis of clamped perforated rectangular plates submerged in water. The penetration of holes in the plates had a triangular pattern with P/D (pitch to diameter) 1.750, 2.125, 2.500, 3.000 and 3.750. The natural frequencies of the perforated plates in air were obtained by the Rayleigh-Ritz method and compared with the experimental results. Good agreement was obtained between the analytical solution and experimental result. The experimental results in water showed that the mode shapes are not sensitive to the depth of submergence. The natural frequencies were shown to decrease drastically once the perforated plates come in contact with water. However, the natural frequencies decrease with the depth of submergence until a certain depth is reached, and become the asymptotic values beyond this depth of submergence. The depth of submergence did not affect the damping ratio greatly.

Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to in-plane force

  • Takahashi, Kazuo;Wu, Mincharn;Nakazawa, Satoshi
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.939-953
    • /
    • 1998
  • Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to an in-plane sinusoidally varying load applied along the free end are analyzed. The thin plate small deflection theory is used. The Rayleigh-Ritz method is employed to solve vibration and buckling of the plate. The dynamic stability problem is solved by using the Hamilton principle to drive time variables. The resulting time variables are solved by the harmonic balance method. Buckling properties and natural frequencies of the plate are shown at first. Unstable regions are presented for various loading conditions. Simple parametric resonances and combination resonances with sum type are obtained for various loading conditions, static load and damping.

지하철 터널구간에서의 지반진동 상세해석 (Detailed Analysis of Ground Vibration in Subway Tunnel)

  • 이일화;황선근;조성호;고학송
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.722-725
    • /
    • 2005
  • Recently, ground-borne noise and vibration generated by underground transit system has been recognized as an important environmental problem. This study reviews several of the improved procedures that have been used to predict ground-borne vibration. At first, ground stiffness profile is examined by SASW test which is the most reasonable surface wave test. It is very important to acquire the exact ground stiffness profile at ground response analysis. At second, the train loading to act roadbed is calculated by using the real measured phase angle data. In finite element analysis, averaged acceleration method, infinite element, Rayleigh damping and 2-dimensional wave propagation analysis is performed.

  • PDF

네 변이 고정된 평판의 진동 및 방사 소음 예측에 관한 연구 (A Study on Prediction of vibration and Sound Radiation by Plate With Four Edges Clamped)

  • 심현진;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.743-747
    • /
    • 2003
  • In recent years, several studies of the practical application of active sound and vibration control have been developed to plate to plate response with various boundary conditions. This study considers vibration and sound radiation for the clamped rectangular plate. The radiation of a sound from rectangular plate can be calculated that the velocity of a vibrating plate is analyzed. The vibration formulation is based on a variation method for the vibration of the plate, and assumes no damping, no fluid loading of the structure. And the plate is exited by harmonic point force. The radiation of sound from plate is analyzed in the far field, and is calculated from the Rayleigh integral. The prediction results of vibration and sound level have proved with FEM or BEM.

  • PDF

Soil-structure interaction effects on the seismic response of multistory frame structure

  • Botic, Amina;Hadzalic, Emina;Balic, Anis
    • Coupled systems mechanics
    • /
    • 제11권5호
    • /
    • pp.373-387
    • /
    • 2022
  • In this paper,soil-structure interaction effects on the seismic response of multistory frame structure on raft foundation are numerically analyzed. The foundation soil profile is assumed to consists of a clay layer of variable thicknessresting on bedrock. Amodified plane-strain numerical model isformed in the software Plaxis, and both free vibration analysis, and earthquake analysis for a selected ground motion accelerogram are performed. The behavior of the structure is assumed to be linear elastic with Rayleigh viscous damping included. The behavior of the clay layer is modeled with a Hardening soil model with small strain stiffness. The computed results in terms of fundamental period and structural horizontal displacementsfor the case of fixed base and for different thicknesses of clay layer are presented, compared, and discussed.

경사충돌 피닝잔류응력에 미치는 해석인자의 영향 및 소성숏이 포함된 3차원 유한요소모델 (3D FE Model with FEA Factors and Plastic Shots for Residual Stress Under Oblique Shot Peening)

  • 이배화;김태형;이형일
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.323-331
    • /
    • 2010
  • 본 연구에서는 경사충돌시 피닝잔류응력 평가를 위해 3 차원 유한요소해석모델을 제안한다. 단일경사 충돌 해석모델을 이용해 Rayleigh 재료감쇠, 동적마찰 그리고 재료의 변형률 속도에 대한 영향을 알아 보고 이를 통합하여 피닝잔류응력 유일해를 얻는다. 숏볼은 변형을 고려한 소성숏을 포함한 해석 모델이며, 다중숏 경사충돌해석으로 확장한다. 다중경사충돌 해석모델은 단일경사충돌 연구를 통해 결정된 통합된 피닝인자들을 반영했고, 숏볼은 소성숏을 사용하였다. XRD 실험해와 비교시, 강체 및 탄성숏 해석모델에서 얻어진 해석해에 비해 소성숏 모델의 해석해가 실험해에 매우 근접하다. 이로부터 다양한 투사각을 갖는 3 차원 유한요소해석모델의 유효성을 확인하였다. 궁극적으로 제안된 해석모델은 실제 피닝현상을 충분히 반영하기 위한 다중숏 경사충돌해석연구의 초석이 될 것이다.

구조물의 동적 고유특성을 이용한 새로운 집중질량모델 개발 (Development of a New Lumped-Mass Stick Model using the Eigen-Properties of Structures)

  • 노화성;윤지만;이후석;이종세
    • 한국지진공학회논문집
    • /
    • 제16권4호
    • /
    • pp.19-26
    • /
    • 2012
  • 구조물의 내진설계 또는 내진성능평가를 위해서는 구조물의 축소모형을 이용한 실험적 분석이나 유한요소모델을 기반으로 한 수치적 방법이 고려된다. 수치적 방법을 위해서는 정교한 모델링이 요구될 경우 3차원 유한요소해석을 실시하나 민감도 분석이나 지진 취약도 분석과 같은 방대한 지진데이터를 이용한 평가에서는 집중질량모델이 선호된다. 하지만 기존의 집중질량모델은 일반적으로 구조물의 기하학적 형상을 고려하여 집중질량을 산출하는 방식인데, 이 경우 제공되는 고유치는 실구조물의 고유치와 일치하지 않는다. 본 연구에서는 이러한 문제점을 개선하고 실구조물과 유사한 동적 거동을 발현하는 새로운 형식의 주파수 순응형 집중질량모델을 제안하였다. 제안된 모델은 실구조물의 고유치와 고유 벡터, 모드 형상 등을 고려하여 생성하며, 모델의 성능을 검증하기 위해 비균일 단면을 갖는 기둥에 대해 동적해석을 수행하였다. 또한 감쇠비에 따른 동적성능을 분석하기 위해 1%에서 5%까지의 Rayleigh Damping 적용하여 그 결과를 유한요소모델 결과와 비교하였다.

Dynamic performance of a composite building structure under seismic ground motions

  • Tsai, Meng-Hao;Zhang, Junfei;Song, Yih-Ping;Lu, Jun-Kai
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.179-191
    • /
    • 2018
  • This study is aimed at investigating the dynamic performance of a composite building structure under seismic ground motions. The building structure is an official fire department building located in southern Taiwan. It is composed of a seven-story reinforced concrete (RC) and an eight-story steel reinforced concrete (SRC) frame. Both frames share a common basement and are separated by expansion joints from the first to the seventh floor. Recorded floor accelerations of the building structure under eight earthquakes occurring during the period from 2011 to 2013 were examined in this paper. It is found that both frames had similar floor acceleration amplifications in the longitudinal direction, while the SRC frame revealed larger response than the RC frame in the transverse direction. Almost invariant and similar fundamental periods under the eight earthquakes in both directions were obtained from their transfer functions. Furthermore, numerical time-history simulations were carried out for the building structure under the most intensive earthquake. It is realized that the seismic response of the composite building was dominated by the first translational mode in each horizontal direction. Higher modes did not significantly contribute to the structural response. The conventional Rayleigh damping model could be appropriately applied to the time-history simulations under bi-directional excitations. Approximate floor acceleration envelopes were obtained with a compound RC and SRC structural model by using the average damping ratios determined from the different structural arrays.

Assessment of 3D earthquake response of the Arhavi Highway Tunnel considering soil-structure interaction

  • Sevim, Baris
    • Computers and Concrete
    • /
    • 제11권1호
    • /
    • pp.51-61
    • /
    • 2013
  • This paper describes earthquake response of the Arhavi Highway Tunnel its geometrical properties, 3D finite element model and the linear time history analyses under a huge ground motion considering soil-structure interaction. The Arhavi Highway Tunnel is one of the tallest tunnels constructed in the Black Sea region of Turkey as part of the Coast Road Project. The tunnel has two tubes and each of them is about 1000 m tall. In the study, lineartime history analyses of the tunnel are performed applying north-south, east-west and up accelerations components of 1992 Erzincan, Turkey ground motion. In the time history analyses, Rayleigh damping coefficients are calculated using main natural frequency obtained from modal analysis. Element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motion. Because of needed too much memory for the analyses, the first 10 second of the ground motions, which is the most effective duration, is taken into account in calculations. The results obtained 3D finite element model are presented. In addition, the displacement and stress results are observed to be allowable level of the concrete material during the earthquakes.