• Title/Summary/Keyword: Ray-tracing analysis

Search Result 169, Processing Time 0.029 seconds

A Study on the Calculation of Overshadowing Area by Ray-Tracing Method (Ray-Tracing Method를 이용한 일영면적 산정방식 고찰)

  • Choi, Jeong-Min;Cho, Sung-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.36-41
    • /
    • 2011
  • Nowadays, the solar expose right is very important with people's life. Therefore, in calculating the sunshine hours, the point analysis and area analysis methods are used in previous studies. Previous two methods have merits and faults. Therefore, ray-tracing method is used as a alternative. Ray-tracing method is adopted by the software of Autodesk Ecotect which is a widely used program by the architectural company and academic university. In this study first, ray-tracing methodology is studied with how to calculate the overshadowing area and, secondly, the sensitivity of the two major factors, overshadowing accuracy and sky subdivision, is analyzed. With these results, appropriate application of the ray-tracing method is presented.

Propagation Analysis Method in using 3D Ray Tracing Model in Wireless Cell Planning Software (무선망 설계툴에서 3 차원 광선 추적법을 이용한 전파해석 방법)

  • Shin, Young-Il;Jung, Hyun-Meen;Lee, Seong-Choon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.251-255
    • /
    • 2007
  • In this paper, propagation analysis method in using 3D Ray Tracing propagation model in wireless cell planning is proposed. Through 3D Ray Tracing model, we can predict the distribution of propagation loss of the received signal. For correct and a low complex analysis, Quad Tree and Pre-Ordering and Hash Function algorithms are included in 3D Ray Tracing algorithm. And 3D Ray Tracing model is embodied in CellTREK that is developed by KT and used to plan Wibro system analysis. In CellTREK, propagation analysis is performed and that result is represented in 3D viewer. In numerical results, it is showed that the proposed scheme outperforms Modified HATA model when comparing with measurement data.

  • PDF

A New Ray Tracing Method of a Plastic Lens Connected with finite-Element Analysis (유한요소해석과 연계한 플라스틱 렌즈의 광선추적 기법)

  • Park K.;Lee S. K.;Jeon K. S.;Mo P. S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.100-107
    • /
    • 2005
  • The present work covers a new ray tracing scheme of an injection-molded plastic lens linked with finite element analysis fur injection molding processes. The traditional ray tracing schemes have been based on the assumption that optical property of the lens is homogeneous throughout the entire volume. However, this assumption is quite unrealistic for injection-molded plastic lenses since material properties vary at every point due to injection molding effects. In order to consider non-homogeneous property of a lens, a modified ray tracing method is proposed in connection with finite element analysis of injection molding. Through the analysis of the injection molding process, the distribution of refractive indices can be obtained. This information is then utilized in the proposed ray tracing scheme based on finite element meshes so as to take into account variation of the refractive indices. The effect of mold temperature is also investigated through finite element analysis, and the relevant optical quality is evaluated through the proposed ray tracing simulation.

Ray Tracing of a Plastic Aspheric Lens by Considering Index Distribution Induced from Injection Molding (사출성형시 굴절율 변화를 고려하기 위한 플라스틱 비구면 렌즈의 광선추적기법)

  • Eom, Hye-Ju;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.128-134
    • /
    • 2009
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting an injection molding analysis with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a numerical scheme is developed to calculate the distribution of refractive index induced from the injection molding process. This index distribution is then reflected onto CODE $V^{(R)}$ simulation and used to calculate ray paths in inhomogeneous media. The proposed tracing scheme is implemented on the tracing of an aspheric lens for a mobile phone camera module.

Evaluation of Optical Performance for an Aspheric Lens Connecting with FE Analysis of Injection Molding (사출성형 유한요소해석과 연계한 비구면렌즈의 광학적 특성평가)

  • Park, K.;Um, H.J.;Kim, J.P.;Joo, W.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.25-30
    • /
    • 2007
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting a finite element (FE) analysis of injection molding with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a new.ay tracing scheme is proposed in conjunction with a FE analysis of the injection molding. A numerical scheme is developed to calculate ray paths on every element layer with more realistic information of the refractive indices which can be obtained through the FE analysis. This information is then used to calculate the ray paths based on the FE mesh of which nodal points have unique index values. The proposed tracing scheme is implemented on the tracing of an aspheric lens, and its validity is ascertained through experimental verification.

Modeling and Analysis of a Ray Tracing Method for Non-Destructive Testing for Internal Defects (광선추적법을 이용한 비파괴 내부 결함 모델 및 해석)

  • Kim, Teak Gu;Kim, Joohan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.75-81
    • /
    • 2015
  • Modeling and analysis using a ray tracing method for internal defects were described. Reflection and refraction of rays on the interface of defects were modeled using the Harvey model and the Lambertian model. The diffraction on the interface of defects affected the incoming signals and it could evaluate any defects in the matter and its signal would be analyzed with the ray tracing simulation. The simulation results were compared with actual detecting signals and the ray tracing model was shown in good agreement with experimental data. This method has a possibility to be used as wave propagation modeling in non-destructive testing.

Interior Noise Analysis for Rolling Stocks by Ray tracing Method (Ray Tracing 기법을 이용한 철도차량 실태소음 해석)

  • 이용관;정승원
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.388-397
    • /
    • 1998
  • This paper gives the way of analyzing internal noise of rolling stocks which is urgently required by civilians. Triangular beam method among ray tracing techniques is utilized to compute noise distribution of rolling stocks. Noise source and transmisstion loss of several sections from experimental work are included in this calculation. Ray tracing technique is found useful to compute big structures like rolling stocks.

  • PDF

Optical Analysis for the Autostereoscopic Display with a Lenticular Array Using Finite Ray Tracing (유한광선추적을 이용한 렌티큘러 렌즈 기반 3차원 디스플레이 장치의 해석)

  • Kim, Bong-Sik;Kim, Keon-Woo;Choi, Da-Shin;Park, Woo-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.162-166
    • /
    • 2014
  • We propose an analysis method of an autostereoscopic display system with lenticular lens array using finite ray-tracing method that is verified by the geometrical optics. In the present work, we adopt the cylinder equation for the mathematical expression of the lenticular lens. For the calculation of the direction cosine of the transmitted ray, we first calculate the refracting point at bottom of the lens and the direction cosine of the incident ray that propagating through the lens by the Snell's law, and then apply to finite ray-tracing method. Finally, we obtain the simulation results for the intensity distribution of the ray at optimal viewing distance. From these results, we confirm the realization of 3D image that exists separately according to the viewing position at an optimal viewing distance.

Implementation of Real-time Interactive Ray Tracing on GPU (GPU 기반의 실시간 인터렉티브 광선추적법 구현)

  • Bae, Sung-Min;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.7 no.3
    • /
    • pp.59-66
    • /
    • 2007
  • Ray tracing is one of the classical global illumination methods to generate a photo-realistic rendering image with various lighting effects such as reflection and refraction. However, there are some restrictions on real-time applications because of its computation load. In order to overcome these limitations, many researches of the ray tracing based on GPU (Graphics Processing Unit) have been presented up to now. In this paper, we implement the ray tracing algorithm by J. Purcell and combine it with two methods in order to improve the rendering performance for interactive applications. First, intersection points of the primary ray are determined efficiently using rasterization on graphics hardware. We then construct the acceleration structure of 3D objects to improve the rendering performance. There are few researches on a detail analysis of improved performance by these considerations in ray tracing rendering. We compare the rendering system with environment mapping based on GPU and implement the wireless remote rendering system. This system is useful for interactive applications such as the realtime composition, augmented reality and virtual reality.

  • PDF

Electromagnetic Wave Propagation Characteristics from Large Scale Random Rough Surfaces (큰 규모의 불규칙 조면에 의한 전자파 전파 특성)

  • Yoon Kwang-Yeol;Chai Yong-Yoong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.393-399
    • /
    • 2006
  • In this paper we applied a ray tracing method to estimate the scattering characteristics from large scale random rough surfaces. For the electromagnetic field evaluation, we have used the diffracted coefficient of the knife edge diffraction for the diffracted rays and Fresnel's reflection coefficients in connection with reflected rays. In addition, we examine to search for the traced rays using the imaging method which can be obtained all rays to arrived at receivers accurately and the diffracted field from rough surfaces is considered. Numerical examples have been carried out for the scattering characteristics of an ocean wave-like rough surface and delay spread characteristics of a building-like surface. In the present work we have demonstrated that the ray tracing method is effective to numerical analysis of a rough surface scattering.