• Title/Summary/Keyword: Ray Optics

Search Result 315, Processing Time 0.028 seconds

X-ray Radiation from Pulsed Discharge Plasma (펄스형 방전플라스마에서 발생하는 X선 측정)

  • Choi, Woon-Sang;Moon, Byeong-Yeon;Kwak, Ho-Won
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.4
    • /
    • pp.311-315
    • /
    • 2006
  • We investigated X-ray radiated from the pulsed Plasma Focus device that translated from electric energy into electromagnetic wave by electric discharge. X-ray radiation is analysed by using pin photodiode and 0.5mm pinhole camera shielded by $25{\mu}m$ Be. The condition of X-ray radiation was that the discharging voltage was 15 kV and the working gas were 0.12 torr Argon. Reproducibility of X-ray radiation is investigated and X-ray temperature is calculated above 3keV.

  • PDF

Calculation of the coupling coefficient for trapezoidal gratings using the ray optics technique (기하광학 방법을 이용한 사다리꼴 회절격자의 결합계수 계산)

  • 조성찬;김부균
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.97-104
    • /
    • 1997
  • Using the ray optics technique, we derive the analytic expressions of TE mode coupling coefficient for five-layer distributed feedback (DFB) structure devices. We compare the coupling coefficient calculated by the ray optics technique with those calulated by the extended additional layer method (EALM) which may be a most accurate method of calculating the coupling coefficient. The difference between the results of the ray optics technique and those of the EALM is small for most cases of grating depth and forms being practically made. In the case of rectangular gratings, the difference increases as the duty cycle of graing deviates from 0.5. In the case of the trapezoidal grating, the difference increases as the ratio of the top to the period of grating deviates from 0.5 and as the length of the top becomes longer than that of the base. The difference of theree-layer DFB structures is smaller than that of five-layer DFB structures.

  • PDF

Prediction of Electromagnetic Wave Propagation in Space Environments Based on Geometrical Optics

  • Kim, Changseong;Park, Yong Bae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.165-167
    • /
    • 2017
  • We predict the electromagnetic wave propagation in space environments using geometrical optics. The effective indices of the troposphere, stratosphere, and ionosphere are computed, and the reflection, refraction, and attenuation of electromagnetic waves in space environments are calculated based on the ray tracing technique and geometrical optics. The influence of the refractive index and loss of atmosphere and the incident angle of the antenna on electromagnetic wave propagation is discussed.

Development and Evaluation of Parallel Beam Optic for X-ray (엑스선용 평행빔 광학소자 개발 및 평가)

  • Park, Byunghun;Cho, Hyungwook;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.477-481
    • /
    • 2012
  • An X-ray diffractometer which has various X-ray optics can give qualitative and quantitative information for a sample using a nondestructive analysis method. A parallel beam optic passes the parallel beam and removes divergent beam generated from an X-ray tube. The parallel beam optic used in the X-ray diffractometer was fabricated by wire cut and grading of stainless steel plates and was evaluated its performance using an X-ray imaging system. The measured parallelization of 6.6 mrad for the fabricated the parallel beam optic was a very close to the expected value of 6 mrad. An X-ray imaging technique for evaluating the parallel beam optics can estimate parallelization for each plate and can be used to other X-ray optics.

Fabrication of X-ray monocapillary optics for soft X-ray fluorescence analysis (경 X선 형광분석을 위한 모세관 광학소자 제작)

  • Cho, Hyung-Wook;Park, Byung-Hoon;Kim, Yong-Min;Choi, Chul-Hee;Choi, Seong-Hee;Kim, Ki-Hong;Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.409-413
    • /
    • 2011
  • An X-ray tube used an X-ray fluorescence analysis system has a low X-ray photon intensity which results in reducing measurement accuracy and increasing exposure time. These shortages can be overcame by using a monocapillary optics. A monocapillary optics was optimally designed for focusing the characteristic X-ray of tungsten (8.4 keV). The monocapillary optics can achieve a gain of 10 at the least. The monocapillary optics was fabricated by using puller and pyrex glass, raw material. In fabrication, a weigh of 45g and a temperature of $650^{\circ}$ was loaded. The total fabrication time was 460 minutes. The fabricated capillary had 87 mm in length and maximum diameter of 300 ${\mu}m$ and minimum diameter of 192 ${\mu}m$. When the fabricated monocapillary optics is applied to an X-ray fluorescence analysis system, the detection accuracy for soft elements, for example sulfur (S), will be improved.

Ray-optical determination of the coupling coefficients of waveguide gratings by use of the rigorous coupled wave theory (회절격자구조를 갖는 도파로 소자의 엄밀한 광선광학적 결합계수 계산)

  • 박선택;송석호;오차환;김필수
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.348-353
    • /
    • 1999
  • Ray-optics approach based on the rigorous coupled wave theory, called by the rigorous ray-optics method (RROM), is developed for the calculation of couling coefficients of waveguide grating devices. The coupling coefficients of several grating structures, such as rectangular, sinusoidal, triangle, and trapezoidal shapes, are determined by the RROM, and they are compared with those obtained by conventional methods of the ray-optics method (ROM) and the coupled mode method (CMM). In the case of rectangular gratings, the coupling coefficients is evaluated in detail by various depths and duty-cycles of the grating. We have found that the RROM gives more exact solutions for the coupling coefficients of even arbitrary shapes of diffractive waveguide grating devices than the other conventional methods.

  • PDF

Optical Design of Afocal Zoom Telescope System for Thermal Imagery (열상장비용 줌무초점망원경 설계)

  • 홍경희;김창우
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • A IR zoom telescope system was designed for thermal imagery. The magnification is 4-14 and the focal length of eye piece is 25 mm. First, the frame was built up with first order optics and started design with 3rd order optics. There after, we can get the final design by optimization technique through finite ray tracing. The optical system was optimized with ray aberration or angular aberration including higer orders. Finally, The performance of the optical system was accessed by calculating the diffraction MTF from the design data. data.

  • PDF