• Title/Summary/Keyword: Ray Density

Search Result 1,738, Processing Time 0.037 seconds

A novel reconstruction algorithm based on density clustering for cosmic-ray muon scattering inspection

  • Hou, Linjun;Zhang, Quanhu;Yang, Jianqing;Cai, Xingfu;Yao, Qingxu;Huo, Yonggang;Chen, Qifan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2348-2356
    • /
    • 2021
  • As a relatively new radiation imaging method, the cosmic-ray muon scattering imaging technology can be used to prevent nuclear smuggling and is of considerable significance to nuclear safety. Proposed in this paper is a new reconstruction algorithm based on density clustering, aiming to improve inspection quality with better performance. Firstly, this new algorithm is introduced in detail. Then in order to eliminate the inequity of the density threshold caused by the heterogeneity of the muon flux in different positions, a new flux correction method is proposed. Finally, three groups of simulation experiments are carried out with the help of Geant4 toolkit to optimize the algorithm parameters, verify the correction method and test the inspection quality under shielded condition, and compare this algorithm with another common inspection algorithm under different conditions. The results show that this algorithm can effectively identify and locate nuclear material with low misjudging and missing rates even when there is shielding and momentum precision is low, and the threshold correcting method is universally effective for density clustering algorithms.

Development of Portable X-ray CT System II - CT Image Reconstruction of Wood using Density Distribution - (현장 적용이 가능한 X선 CT 시스템 개발 II- 밀도분포를 이용한 목재의 CT영상 구성 -)

  • Kim, Kwang-Mo;Lee, Sang-Joon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-31
    • /
    • 2006
  • X-ray transit materials with straight path and the its intensity is proportional to the density of materials. Therefore, X-ray has been extensively used as a nondestructive evaluation (NDE) method in various fields. This study was carried out for development of a portable X-ray CT (computed-tomography) system to detect deteriorations of wood members in buildings. Based on the results of our previous study, a procedure of CT image reconstruction was established In order to verify the applicability of developed system, CT images of three wood disks were reconstructed by newly developed procedure and compared with the prototypes. From the results of this study, it was shown that the newly developed system could be used not only to determine the shape, size, and position of defects, but also to find the density distribution in cross section of wood structure members. The density distribution may be utilized to clarify the reason of wood deterioration and to provide the preventive method on how to treat or repair wood buildings. Because it was initial stage of system development, there were some limitations concerned with measuring equipment and image reconstruction algorithm. Especially, measuring time including equipment setup time was longer and measuring accuracy was lower than we expected. Therefore, we planned some additional studies on improvement of equipment and algorithm to enhance the capability of X-ray CT system.

In situ Synchrotron X-ray Techniques for Structural Investigation of Electrode Materials for Li-ion Battery (방사광 X-선을 이용한 리튬이온전지 소재의 실시간 구조 분석 연구)

  • Han, Daseul;Nam, Kyung-Wan
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.402-416
    • /
    • 2019
  • The development of next-generation secondary batteries, including lithium-ion batteries (LIB), requires performance enhancements such as high energy/high power density, low cost, long life, and excellent safety. The discovery of new materials with such requirements is a challenging and time-consuming process with great difficulty. To pursue this challenging endeavor, it is pivotal to understand the structure and interface of electrode materials in a multiscale level at the atomic, molecular, macro-scale during charging / discharging. In this regard, various advanced material characterization tools, including the first-principle calculation, high-resolution electron microscopy, and synchrotron-based X-ray techniques, have been actively employed to understand the charge storage- and degradation-mechanisms of various electrode materials. In this article, we introduce and review recent advances in in-situ synchrotron-based x-ray techniques to study electrode materials for LIBs during thermal degradation and charging/discharging. We show that the fundamental understanding of the structure and interface of the battery materials gained through these advanced in-situ investigations provides valuable insight into designing next-generation electrode materials with significantly improved performance in terms of high energy/high power density, low cost, long life, and excellent safety.

A Study on the Comparision of Performance between Three-phase Full-wave and Single-phase Full-wave X-ray Generators (삼상(三相)12펄스 전파정류장치(全波整流裝置)와 단상(單相) 전파정류장치(全波整流裝置)의 성능(性能) 비교(比較))

  • Kim, Young-Ill;Kim, Chang-Kyun;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.3 no.1
    • /
    • pp.81-86
    • /
    • 1980
  • To compare three-phase 12-pulse full-wave X-ray generators with single-phase full-wave X-ray generators on their performance of outputs, authors studied the generating X-ray by means of exposure dose and radiographic density. The results were as follows; 1. The exposure doses of three-phase full-wave X-ray generators showed a 30%-60% increase as compared against of single-phase full-wave generators. 2. The transmitted doses of three-phase full-wave generators were more increased than single-phase full-wave X-ray generators. 3. To obtain the same density, 60kVp in three-phase full-wave generators were equivalent to $60{\sim}65kVp$ in single-phase full-wave generators, and 100kVp in those generators were equivalent to $100{\sim}125kVp$ in these generators.

  • PDF

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

Hot gas halo in early type galaxies and their environments

  • Kim, Eun-Bin;Choi, Yun-Young;Kim, Sung-Soo S.;Park, Chang-Bum
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2012
  • We present an investigation of X-ray hot gas halo in 12 isolated early-type galaxies from cross-matched sample of XMM-Newton and SDSS DR 7(0.025 < z < 0.08588 and Mr <-19.5). Isolated galaxies that the separation between galaxy and the closest neighbor is farther than its virial radius are not affected by environments, and their X-ray hot gas halo can be studied without contribution of intragalactic medium in all circumstances. We find that isolated galaxies in low density have correlation of $L_X-L_R$ and those in high density have no trend. This suggests that internal process is much effective in low density and environmental effects play important role of this relationship in high density. We also find the galaxies affected by environments in the large scale structure. In this paper, we report preliminary results for the study.

  • PDF

Sputtering of Multifunctional AlN Passivation Layer for Thermal Inkjet Printhead

  • Park, Min-Ho;Kim, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.50-50
    • /
    • 2011
  • The aluminum nitride films were prepared by RF magnetron sputtering using an AlN ceramic target. The crystallinity, grain size, Al-N bonding and thermal conductivity were investigated in dependence on the plasma power densities (4.93, 7.40, 9.87 W/$cm^2$) during sputtering. High thermal conductivity is important properties of A1N passivation layer for functioning properly in thermal inkjet printhead. The crytallinity, grain size, Al-N bonding formation and chemical composition were observed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. The AlN thin film was changed from amorphous to crystalline as the power density was increased, and the largest grain size appeared at medium power density. The near stoichiometry Al-N bonding ratio was acquired at medium power density. So, we know that the AlN thin film had better thermal conductivity with crystalline phase and near stoichometry Al-N bonding ratio at 7.40 W/$cm^2$ power density.

  • PDF

Cross-calibration of Bone Mineral Density between Two Different Dual X-ray Absorptiometry Systems: Hologic QDR 4500-A and Lunar EXPERT-XL (서로 다른 이중에너지 방사선흡수기계 기종(Hologic QDR 4500-A와 Lunar EXPERT-XL) 간의 골밀도 교차 보정)

  • Jo, Jin-Man;Kim, Jae-Seung;Kim, Ghi-Su;Kim, Sang-Wook;Shin, Jung-Woo;Moon, Dae-Hyuk;Lee, Hee-Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.3
    • /
    • pp.282-288
    • /
    • 1999
  • Purpose: A cross-calibration equation is needed to compare bone mineral density measured by different dual X-ray absoptiometry systems. We performed this study to establish appropriate cross-calibration equations between two different dual X-ray absorptiometry systems. Materials and Methods: Bone mineral density of anterior-posterior lumbar spine (L2-4 level) and femoral neck were measured in 109 women ($55{\pm}11yr$) using two different dual X-ray absorptiometry systems (Lunar EXPERT-XL and Hologic QDR 4500-A). Bone mineral density values measured by two systems, including area, bone mass content, bone mineral density and percentile of young normals were compared and cross-calibration equations between two systems derived. Results: The bone mineral density values of 109 women measured by Lunar system were $0.958{\pm}0.17g/cm^2$ at L2-4 and $0.768{\pm}0.131g/cm^2$ at femur neck, which were significantly higher ($13{\pm}6%$ at L2-4 and $19{\pm}7%$ at femur neck, p<0.001) than those ($0.851{\pm}0.144 g/cm^2$ at L2-4 and $0.649{\pm}0.108 g/cm^2$ at femur neck) by Hologic system. Bone mineral content and percentile of young normals measured by Lunar system were also significantly higher than those by Hologic system (p<0.001), whereas there was no difference in area (p>0.05). There was a high correlation between bone mineral density values of L2-4 and femoral neck obtained with both dual X-ray absortiometry systems (r=0.96 and 0.95, respectively). Cross-calibration equations relating the bone mineral density were Lunar= 1.1287${\times}$Hologic -0.0027 for L2-4 and Lunar= 1.1556${\times}$Hologic+0.0182 for femoral neck. Conclusion: We obtained cross-calibration equations of bone mineral density between Lunar EXPERT-XL and Hologic QDR 4500-A. These equations can be useful in comparing bone mineral density obtained by different dual X-ray absorptiometry systems.

  • PDF

MAGNETOSPHERIC STRUCTURE OF THE INTERMEDIATE POLAR

  • Kim, Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 1994
  • The structure of the magnetic funnel element in the intermediate polar is considered in terms of an important site for the X-ray absorption and the reemission of the X-ray as the optical light. In this paper the column density and the optical depth vary with the filling factor, which is introduced to characterize the structure of matter in the magnetic funnel element. The results of the energy dependence of the X-ray spectrum and the modulation depth of the X-ray light curve are discussed.

  • PDF

A STUDY ON THE SCATTER RADIATION AFFECTING THE DENTAL X-RAY FILM (산란 방사선이 치과용 방사선 필름에 미치는 영향에 관한 연구)

  • Park Eung Chun;Kim Jae Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.1
    • /
    • pp.87-94
    • /
    • 1992
  • The purpose of this study was to evaluate the effect of scatter radiation to dental x-ray film with long time-exposure in the different structures of the tooth, by using pinhole camera. For this study, pinhole camera, skull with tooth, and pocket dosimeter were used. The radiation with 70 and 90kVp and exposure time (minimum: 2.5 min., maximum 10 hrs.) was projected to the film in the pinhole camera. And density of the obtained x-ray film was measured with densitometer. In the intra-oral film taking, the amount of exposure of the scatter radiation affecting the thyroid gland area was measured with the dosimeter at the thyroid gland. The density of radiographs was compared in radiation projected with or without the metal cone of dental machine. The effect of the back scatter radiation to the film was also evaluated when the lead foil was removed. The obtained results were as follows: 1. A pinhole camera was a valuable device for locating the source of x-ray. 2. The scatter radiation affected the dental x-ray film when the radiation source was exposed. more than 5 hours'. In that case, the density of the scatter radiation could be observed visually. 3. The scatter radiation caused by short exposure of dental radiation didn't affect the diagnostic quality of the dental x-ray film. 4. The differences of densities between the tooth and the soft tissue according to exposure time showed 0.16 in 5 hours' exposure & 0.17 in 10 hours' exposure at 70 kVp & 0.12 in 5 hours' exposure & 0.13 in 10 hours' exposure at the 90kVp. 5. The differences of densities between the tooth and the soft tissue according to kVp showed no difference between 5 hours' exposure of tooth at 70 kVp and soft tissue at 90 kVp, but showed 0.05 high density in tooth when 10 hours' exposure at 90 kVp. 6. No difference of density was on radiographs taken with or without dental machine cone. 7. Back scatter radiation was recorded image of radiographs for only 3 min. 8. The amounts of the scatter radiation exposed to the thyroid gland in intraoral film taking were 1.12 mr in upper anterior, 0.55 mr in upper posterior, 2.75 mr in lower anterior, and 1.92 mr in lower posterior teeth.

  • PDF