• 제목/요약/키워드: Raw materials

검색결과 3,102건 처리시간 0.028초

수화물 소성법에 의한 알루민산삼칼슘 클링커의 합성에 관한 연구 (Study on Synthesis of Tricalciumaluminate Clinker by Hydrate-burning Method)

  • 기태경;송태웅
    • 한국세라믹학회지
    • /
    • 제44권9호
    • /
    • pp.517-523
    • /
    • 2007
  • For the preparation of tricalciumaluminate $(C_3A)$ clinker, in traditional clinkering method using oxides and carbonates as a raw material, uneconomical repetition of burning have been necessary to avoid the melting of clinker by eutectic reaction in the system $CaO-Al_2O_3$. In this study, special starting raw materials for the clinker burning were prepared from a mixture of oyster shell and aluminium hydroxide by heating to $1100^{\circ}C$ and hydrating at $30^{\circ}C$. The starting raw materials, hardened body with weak hydraulic strength, were mainly composed of $C_3AH_6$ formed by resolution-precipitation mechanism of the system $CaO-Al_2O_3-H_2O$. By heating them, relatively pure $C_3A$ clinker could be obtained by one-time burning at the fairly lower temperature than that of conventional method. The easier formation of $C_3A$ clinker seemed to be caused by higher compositional homogeneity and stoichiometry of the starting materials, high surface area and crystallographic instability of the thermally decomposed products, and the catalytic effect of decomposed moisture on the early-stage crystallization of calciumaluminates. The basic hydration behavior of the clinker was also confirmed.

다구치 방법을 이용한 복합재료 자동차용 마찰재의 마찰특성에 관한 연구 (A Study on the Friction Characteristics of Automotive Composites Brake Pads Using Taguchi Method)

  • 이정주;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.141-146
    • /
    • 2000
  • It has many variables and factors to design the friction materials for automotive brake pads. In this study, the friction and wear characteristics of automotive blake pads have been studied using 1:l full size dynamo meter. Using conventional manners, it takes a great of time and efforts to know that it affects the each raw materials for friction characteristics. For the purpose of examining the effect of each major raw materials, we used the more convenient Taguchi L9 ($3^4$) orthogonal matrix and 1/5 scale dynamo machine for evaluation of the friction characteristics of composite brake pads.

  • PDF

원료의 선도가 멸치액젓의 품질 및 위생안전성에 미치는 영향 (Effect of Raw Material Freshness on Quality and Safety of Anchovy Fish Sauce)

  • 조영제;정민홍;김보경;정우영;계현진;정효정
    • 수산해양교육연구
    • /
    • 제27권4호
    • /
    • pp.1194-1201
    • /
    • 2015
  • This study conducted to investigate the impact of raw material freshness on the quality and hygienic safety of anchovy fish sauce and suggest the importance of raw material freshness to make high-quality and hygienic anchovy fish sauce by measuring the chemical compositions and histamine. To devide the raw material's freshness levels, raw anchovy was left for 24 hours and was sampled every 4 hour(Group I-VII). As a result, the levels of VBN(volatile basic nitrogen) and histamine increased as time passed each contents were 16.29-87.65 mg/100 g and 6.14-1499.63 mg/100 g respectively. As fish sauce fermented for 18 months, the contents of VBN were 205.31-270.51 mg/100 g and histamine were 120.54-1707.22 mg/100 g, respectively. These results means the levels of VBN and histamine of raw materials are significantly associated with the hygiene of anchovy fish sauce. To investigate the reason of different contents of histamine at each fish sauce, bacteria from each groups were isolated and identified. At group V-VII those the lowest three groups, Leconostoc mesenteroides ssp. cremoris was identified and that produced the highest content of histamine 22.88-101.69 mg/kg and the others produced histamine 3.79-20.2 mg/kg. This means that fish sauce made by low freshness materials contain bacteria have strong ability to make histamine from histidine. Therefore, the freshness of raw material influences the hygiene and safety of fish sauce, and it is most important to manage the freshness of raw material to make the high quality and hygienically safe fish sauce.

Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Kim, Dong Hee;Yu, Jae Keun
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.662-669
    • /
    • 2016
  • In order to identify changes in the nature of the particles due to changes in the inflow rate of the raw material solution, the present study was intended to prepare nano-sized cobalt oxide ($Co_3O_4$) powder with an average particle size of 50 nm or less by spray pyrolysis reaction using raw cobalt chloride solution. As the inflow rate of the raw material solution increased, droplets formed by the pyrolysis reaction showed more divided form and the particle size distribution was more uneven. As the inflow rate of the solution increased from 2 to 10 ml/min, the average particle size of the formed particles increased from about 25 nm to 40 nm, while the average particle size did not show significant changes when the inflow rate increased from 10 to 50 ml/min. XRD analysis showed that the intensity of the XRD peaks increased remarkably when the inflow rate of the solution increased from 2 to 10 ml/min. On the other hand, the peak intensity stayed almost constant when the inflow rate increased from 10 to 50 ml/min. With the increase in the inflow rate from 2 to 10 ml/min, the specific surface area of the particles decreased by approximately 20 %. On the contrary, the specific surface area stayed constant when the inflow rate increased from 10 to 50 ml/min.

시멘트 원료로 국내산 석탄재의 이용 가능성 (The Utilization of Domestic Fly Ash as a Cement Raw Material)

  • 이윤철;이세용;민경소;이창현;박태균;유동우
    • 한국재료학회지
    • /
    • 제32권1호
    • /
    • pp.23-29
    • /
    • 2022
  • Fly ash is a by-product of coal fired electrical power plants and used as a material for cement and concrete; particularly, imported fly ash is mainly applied for cement production. Main objectives of this article are to replace domestic fly ash with an imported source. To verify the possibility of domestic fly ash as a material for cement from the aspect of chemical composition and physical properties, we manufactured various kinds of cement, such as using only natural raw material, shale, and partial replacement with domestic and imported fly ash. When we used the domestic and imported fly ash, there were no specific problems in terms of clinker synthesis or cement manufacturing in relation to the natural material, shale. In conclusion, domestic fly ash has been confirmed as an alternative raw material for cement because 7 days and 28 days compressive strength values were better than those of reference cement using natural raw material, on top of the process issue.

다구치 방법을 이용한 복합재료 자동차용 마찰재의 마찰특성에 관한 연구 (A Study on the Friction Characteristics of Automotive Composites Brake Pads Using Taguchi Method)

  • 김윤해;이정주
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.660-666
    • /
    • 2002
  • It has many variables and factors to design the friction materials for automotive brake pads. The purpose of this study is to develop the proper method for design of low-cost and to know friction characteristics of each raw materials. For the purpose of examining the effect of each major raw materials, we used the Taguchi L9(3$^4$)orthogonal matrix and 1/5 scale dynamo machine for evaluation of the friction characteristics of composite brake pads. By adapting the Taguchi method, it is easy to investigate the influence of each component in complicated composites friction materials. After analyzing the testing results by the Taguchi method, the effect of factors and levels influenced friction behavior was studied.

The Application of Ion Chromatographic Method for Bioavailability and Stability Test of Iron Preparations

  • Kim, Young-Ok;Chung, Hye-Joo;Kong, Hak-Soo;Choi, Dong-Woong;Cho, Dae-Hyun
    • Archives of Pharmacal Research
    • /
    • 제22권3호
    • /
    • pp.288-293
    • /
    • 1999
  • Postabsorptive serum iron level was determined after oral administration of the compounds to human. In serum and whole blood, $Fe^{3+}$ was measured by ion chromatography (IC) using a pyridine-2,6-dicarboxylic acid (PDCA) as an eluent. The serum sample solutions were pretreated with I N HCI and 50% TCA. The whole blood sample solutions were treated with 3 N HCI for 30 min at $125^{\circ}C$. The limit of detection (LOD) of the IC technique is $0.2 {\mu}M$ for$Fe^{2+}$and 0.1 $\mu$M for $Fe^{3+}$. The area under concentration (AUC) can be obtained by the above analytical condition. In addition, to compare the stability of $Fe^{2+}$ to that of $Fe^{3+}$ in pharamaceutical preparations, accelerated stability test was carried out. After storing the samples under $40^{\circ}C$, 75%RH in light-resistant container for various time intervals, the contents of iron of different valencies were determined separately by the IC technique and the change and/or the interchange of among those iron species in preparations was investigated. Iron raw materials are stable, but $Fe^{2+}$ in$Fe^{3+}$ source materials was slightly converted to $Fe^{3+}$ by oxidation. $Fe^{2+}$ in$Fe^{3+}$ source raw materials and $Fe^{3+}$ in $Fe^{2+}$ raw materials are determined as impurities. Therefore, IC technique is found to be an appropriate method for comparative evaluation of dissimilar bioavailability of $Fe^{2+}$ and $Fe^{3+}$, stability of $Fe^{2+}$ and $Fe^{3+}$ raw materials and preparations.

  • PDF

합성 및 원료 조건에 따른 γ-C2S의 순도 (Purity of γ-Dicalcium Silicate with Synthetic and Raw Materials Conditions)

  • 이석희;조형규
    • 한국건축시공학회지
    • /
    • 제20권2호
    • /
    • pp.123-128
    • /
    • 2020
  • γ-C2S(γ-Calcium Silicate)는 벨라이트(belite)의 다형성으로 알려져 있다. γ-C2S는 CO2 고정 능력이 우수하고 제조 시 CO2 배출량이 적은 공정으로 인해 최근 많은 관심을 받고 있는 시멘트계 재료이다. 본 연구에서는 γ-C2S의 건축재료로써 활용하기 위하여 γ-C2S의 고순도 합성을 위한 다양한 합성방법을 조사하고 이를 기반으로 조건별 합성 실험 및 분석을 실시하였으며 γ-C2S의 순도에 대한 다양한 원료와 소성 온도가 미치는 영향도 평가하였다. 여러 종류의 Ca 결합물 재료가 Ca 공급원으로 사용 되었고 Si 소스 공급원으로는 Si가 주성분인 SiO2가 사용되었다. 각각의 원료는 혼합 후 다양한 조건에서 소성시켰다. 그 결과 Ca(OH)2와 SiO2 분말을 원료로 합성하였을 때 최고 높은 γ-C2S 순도를 얻을 수 있었다. 그리고 γ-C2S 제조 실용화를 위해 천연 광물인 석회암 분말과 실리카 모래를 원료로 한 분말을 사용하여 다양한 소성온도에서 합성하였으며 그 결과 합성한 샘플의 γ-C2S의 순도는 77.6%로 나타났다.