9 GPS data with a 30 second sampling rate were extracted from the GPS raw data that recorded with 1 second interval for interpolation. 9 GPS data were interpolated using lagrange interpolation method and compared to the GPS raw data. Using a 9th-order interpolation, error of interpolated code data were within 0.5m.
An optimal raw mix model in stainless steel making is developed. The key raw materials in stainless steel making are stainless steel scrap, steel scrap, and alloy materials like Fe-Ni, Fe-Cr. Among those raw materials, the alloy metals are very expensive as well as rapidly price-changing items. Consequently, it is very important to develop an minimal cost raw mix scheme while the produced stainless steel satisfies the required specification in it's composition. The linear programming model is employed to determine the minimal cost raw mix scheme. Compared with the method being used, the developed linear programming model gives much faster and better solution (lower cost raw mix plan). Together with the linear programming model, the database is also developed, which includes the following: 1) data for raw materials, such as compositions, costs, densities, available inventory levels, and so on, 2) the required specifications process. The developed optimal raw mix model will be implemented in VAX computer.
Performance of the raw water-source heat pump system with a thermal storage tank has been analyzed in winter season. The raw water is transferred through the multi-regional water supply system from Han river. Raw water is large temperature difference resource compared with groundwater. Although the raw water temperature drops to $0.6^{\circ}C$ due to the heavy snowfall and the severe cold in late January and early February, 2010, the system has been normally operated without any trouble this winter. The unit COP and system COP considered all pump power consumption were estimated based on the second-by-second data of the all sensors. The monthly averaged unit COP and system COP are 3.37 and 2.76 respectively with $1.4^{\circ}C$ of raw water in January, 3.55 and 2.89 with $1.6^{\circ}C$ raw water in February, 3.82 and 3.15 with $5.4^{\circ}C$ raw water in March. The performance of the system are increased with raw water temperature, and the COPs are higher than the water-to-air heat pump system using relatively high temperature raw water from Daecheong reservoir because the water-to-water system was operated on the full load condition and was stopped when the thermal storage tank was full of the high temperature water.
The principal objective of this study was to evaluate the sanitary management status of chlorine sterilization methods used for raw fruits in a school foodservice, and to suggest basic data for sanitary improvements in the quality of raw fruits. A questionnaire form predicated on HACCP standards was developed and utilized for self-reported evaluations of dietitians regarding their sanitary management practices. The subjects consisted of 257 dietitians that were employed in school (elementary middle high school) foodservices. The collected data were analyzed with the SAS package. According to the results of this study, it was deemed necessary that optimized sterilization and washing methods for good microbiological safety and quality of strawberries and bananas in school foodservice should be determined. Some strategies for future improvement were also suggested. They included the following: (1) Improvement of policy for assuring the quality of raw fruits by designing some sanitation standards and specifications for raw fruits; (2) Strengthening the research and accumulation of background data regarding methods for the sanitation of raw fruits; (3) Enforced improvement of personal hygiene for dietitians and employees; (4) Use of a variety of methods in sanitary education and employee training.
In general, a classification process between ground data and non-ground data, which include building objects, is required prior to producing a DEM for a certain surface reconstruction from LiDAR data in which the DEM can be produced from the ground data, and certain objects like buildings can be reconstructed using non-ground data. Thus, an exact classification between ground and non-ground data from LiDAR data is the most important factor in the ground reconstruction process using LiDAR data. In particular, building objects can be largely used as digital maps, orthophotos, and urban planning regarding the object in the ground and become an essential to providing three dimensional information for certain urban areas. In this study, an entropy theory, which has been used as a standard of disorder or uncertainty for data used in the information theory, is used to apply a more objective and generalized method in the recognition and segmentation of buildings from raw LiDAR data. In particular, a method that directly uses the raw LiDAR data, which is a type of point shape vector data, without any changes, to a type of normal lattices was proposed, and the existing algorithm that segments LiDAR data into ground and non-ground data as a binarization manner was improved. In addition, this study proposes a generalized building extraction method that excludes precedent information for buildings and topographies and subsidiary materials, which have different data sources.
Object : The goals of this research were to make Performance Enhanced Model(PE) taken the largest performance index (PI) through artificial variation of principle components calculated by principle component analysis for trial data, and to verify the effect through comparing kinematic factors between trial data (Raw) and PE. Method : Ten subjects (5 men, 5 women) were recruited and 80% of their maximal record was considered. The PI is a regression equation. In order to develop PE, we extracted Principle components from trial position data (by Principle Components Analysis (PCA)). Before PCA, we made 17 position data to 3 row matrix according to components. We calculated 3 eigen value (principle components) through PCA. And except Y (medial-lateral direction) component (because motion of Y component is small), principle components of X (anterior-posterior direction) and Z (vertical direction) components were changed as following. Changed principle components = principle components + principle components ${\times}$ k. After changing the each principle component, we reconstructed position data using the changed principle components and calculated performance index (PI). A Paired t-test was used to compare Raw data and Performance Enhanced Model data. The level of statistical significance was set at $p{\leq}0.05$. Result : The PI was significantly increased about 12.9kg at PE ($101.92{\pm}6.25$) when compared to the Raw data ($91.29{\pm}7.10$). It means that performance can be increased by optimizing 3D positions. The difference of kinematic factors as follows : the movement distance of the bar from start to lock out was significantly larger (about 1cm) for PE, the width of anterior-posterior bar position in full phase was significantly wider (about 1.3cm) for PE and the horizontal displacement toward the weightlifter after beginning of descent from maximal height was significantly greater (about 0.4cm) for PE. Additionally, the minimum knee angle in the 2-pull phase was significantly smaller (approximately 2.7cm) for the PE compared to that of the Raw. PE was decided at proximal position from the Raw (origin point (0,0)) of PC variation). Conclusion : PI was decided at proximal position from the Raw (origin point (0,0)) of PC variation). This means that Performance Enhanced Model was decided by similar motion to the Raw without a great change. Therefore, weightlifters could be accept Performance Enhanced Model easily, comfortably and without large stress. The Performance Enhance Model can provide training direction for athletes to improve their weightlifting records.
International Journal of Internet, Broadcasting and Communication
/
제13권2호
/
pp.218-223
/
2021
The five elements of big data are said to be Volume, Variety, Velocity, Veracity, and Value. Among them, data lacking the Veracity of the data or fake data not only makes an error in decision making, but also hinders the creation of value. This study analyzed YouTube's revenue structure to focus the effect of data integrity on data valuation among these five factors. YouTube is one of the OTT service platforms, and due to COVID-19 in 2020, YouTube creators have emerged as a new profession. Among the revenue-generating models provided by YouTube, the process of generating advertising revenue based on click-based playback was analyzed. And, analyzed the process of subtracting the profits generated from invalid activities that not the clicks due to viewers' pure interests, then paying the final revenue. The invalid activity in YouTube's revenue structure is Raw Data, not pure viewing activity of viewers, and it was confirmed a direct impact on revenue generation. Through the analysis of this process, the new Data Value Chain was proposed.
우주 공간에서 GPS 수신기의 사용은 지구저궤도에서 일반화가 되었다. 최근 대부분의 위성은 위성 위치를 찾기 위한 항법 해로써 GPS 수신기를 사용한다. 그러나, GPS 수신기로부터 직접 획득한 항법 해의 정확도는 지도 제작과 같은 위성 활용에서 충분하지가 않다. 정밀궤도결정과 같은 후처리 개념이 위성 위치 정확도를 향상시키기 위해서 위성 자료 처리에 최근 적용되고 있다. 정밀궤도결정은 GPS 수신기의 항법 해가 아닌 원시 측정 자료를 사용한다. 원시 측정 자료의 성능은 GPS 수신기의 원시 측정 자료 정확도 및 추적 루프 알고리듬에 의해서 결정된다. 이 논문에서는 원시 측정 자료의 성능을 평가할 수 있는 기법을 제안하였다. GPS 수신기의 항법 해와 정밀궤도결정의 항법 해를 얻기 위한 지구저궤도위성의 시험 환경 및 절차를 기술하였다. 추가로, GPS수신기의 항법 해, 원시 측정 자료, 정밀궤도결정의 항법 해에 대한 정확도를 분석하였다. 제안된 기법은 일반적인 저궤도 위성에 적용 가능하다.
The dynamic characteristics of both raw-water source and air source heat pump utilized in water treatment facilities were investigated by using TRNSYS simulator. The modeling of the raw water source heat pump was verified by the measured data at the Cheongju water treatment facility, and the modeling at the air source heat pump was verified by the data from the Siheung water treatment facility. The average heating and cooling COPs from the raw-water source heat pump were higher than those of the air source heat pump by 19% and 18%, respectively. The power consumptions of the air source heat pump for the cooling and the heating were higher than those of the raw water source heat pump by 28% and 26%, respectively.
In small-scale water systems, the measurement of quality of raw water in running water is generally implemented when the quality of water is stable and frequency of measurement is low. However, units such as water temperature and pH, which are easily monitored, are frequently measured. In establishing an improvement plan for a water treatment system, the range of concentration of the target material present in the raw water of the running water provides relevant information. If the concentration of target material can be specified by the quality of water of data items that are measured daily, inverse estimation of the range of concentration is possible as well. In this paper, we took note of manganese in the raw water from Ogasawara-mura, Tokyo, and estimated the manganese concentration in the raw water of the running water for the past five years. Based on the results obtained, we have proposed a manganese removal system, considering the current situation and geographical conditions of Ogasawara-mura.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.