• Title/Summary/Keyword: Rational Function Model

Search Result 132, Processing Time 0.026 seconds

VISUALIZATION OF 3D DATA PRESERVING CONVEXITY

  • Hussain Malik Zawwar;Hussain Maria
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.397-410
    • /
    • 2007
  • Visualization of 2D and 3D data, which arises from some scientific phenomena, physical model or mathematical formula, in the form of curve or surface view is one of the important topics in Computer Graphics. The problem gets critically important when data possesses some inherent shape feature. For example, it may have positive feature in one instance and monotone in the other. This paper is concerned with the solution of similar problems when data has convex shape and its visualization is required to have similar inherent features to that of data. A rational cubic function [5] has been used for the review of visualization of 2D data. After that it has been generalized for the visualization of 3D data. Moreover, simple sufficient constraints are made on the free parameters in the description of rational bicubic functions to visualize the 3D convex data in the view of convex surfaces.

Development of the Accuracy Improvement Algorithm of Geopositioning of High Resolution Satellite Imagery based on RF Models (고해상도 위성영상의 RF모델 기반 지상위치의 정확도 개선 알고리즘 개발)

  • Lee, Jin-Duk;So, Jae-Kyeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.106-118
    • /
    • 2009
  • Satellite imagery with high resolution of about one meter is used widely in commerce and government applications ranging from earth observation and monitoring to national digital mapping. Due to the expensiveness of IKONOS Pro and Precision products, it is attractive to use the low-cost IKONOS Geo product with vendor-provided rational polynomial coefficients (RPCs), to produce highly accurate mapping products. The imaging geometry of IKONOS high-resolution imagery is described by RFs instead of rigorous sensor models. This paper presents four different polynomial models, that are the offset model, the scale and offset model, the Affine model, and the 2nd-order polynomial model, defined respectively in object space and image space to improve the accuracies of the RF-derived ground coordinates. Not only the algorithm for RF-based ground coordinates but also the algorithm for accuracy improvement of RF-based ground coordinates are developed which is based on the four models, The experiment also evaluates the effect of different cartographic parameters such as the number, configuration, and accuracy of ground control points on the accuracy of geopositioning. As the result of a experimental application, the root mean square errors of three dimensional ground coordinates which are first derived by vendor-provided Rational Function models were averagely 8.035m in X, 10.020m in Y and 13.318m in Z direction. After applying polynomial correction algorithm, those errors were dramatically decreased to averagely 2.791m in X, 2.520m in Y and 1.441m in Z. That is, accuracy was greatly improved by 65% in planmetry and 89% in vertical direction.

  • PDF

Automatic Building Reconstruction with Satellite Images and Digital Maps

  • Lee, Dong-Cheon;Yom, Jae-Hong;Shin, Sung-Woong;Oh, Jae-Hong;Park, Ki-Surk
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.537-546
    • /
    • 2011
  • This paper introduces an automated method for building height recovery through the integration of high-resolution satellite images and digital vector maps. A cross-correlation matching method along the vertical line locus on the Ikonos images was deployed to recover building heights. The rational function models composed of rational polynomial coefficients were utilized to create a stereopair of the epipolar resampled Ikonos images. Building footprints from the digital maps were used for locating the vertical guideline along the building edges. The digital terrain model (DTM) was generated from the contour layer in the digital maps. The terrain height derived from the DTM at each foot of the buildings was used as the starting location for image matching. At a preset incremental value of height along the vertical guidelines derived from vertical line loci, an evaluation process that is based on the cross-correlation matching of the images was carried out to test if the top of the building has reached where maximum correlation occurs. The accuracy of the reconstructed buildings was evaluated by the comparison with manually digitized 3D building data derived from aerial photographs.

Analytical and experimental study on aerodynamic control of flutter and buffeting of bridge deck by using mechanically driven flaps

  • Phan, Duc-Huynh;Kobayshi, Hiroshi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.549-569
    • /
    • 2013
  • A passive control using flaps will be an alternative solution for flutter stability and buffeting response of a long suspension bridge. This method not only enables a lightweight economic stiffening girder without an additional stiffness for aerodynamic stability but also avoid the problems from the malfunctions of control systems and energy supply system of an active control by winglets and flaps. A time domain approach for predicting the coupled flutter and buffeting response of bridge deck with flaps is investigated. First, the flutter derivatives of bridge deck and flaps are found by experiment. Next, the derivation of time domain model of self-excited forces and control forces of sectional model is reported by using the rational function approximation. Finally, the effectiveness of passive flap control is investigated by the numerical simulation. The results show that the passive control by using flaps can increase the flutter speed and decrease the buffeting response. The experiment results are matched with numerical ones.

A Study on RFM Based Stereo Radargrammetry Using TerraSAR-X Datasets (스테레오 TerraSAR-X 자료를 이용한 RFM 기반 Radargrammetry에 관한 연구)

  • Bang, SooNam;Koh, JinWoo;Yun, KongHyun;Kwak, JunHyuck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.89-94
    • /
    • 2012
  • The RFM (Rational Function Model), as an alternative to physical sensor models has been widely used for photogrammetric processing of high resolution optical satellite imagery. However, the application of RF modeling to the SAR (Synthetic Aperture Radar) is very limited. In this paper, stereo radargrammetric processing of TerraSAR-X stereo pairs with RFM is implemented and analyzed. The investigation has shown that the accuracy of TerraSAR-X DSM is similar to that of the commercial S/W product. Finally, it is demonstrated that RFM is effective and feasible in the application to the radargrammetric SAR image processing.

Multi-Criteria Decision-Making Model Using Quality Function Deployment (QFD) Method for the Most Suitable Temporary Earth Retaining System

  • Jung, Bae Yu;Byung, Cho Han;Jin, Han Sang;Won, Kwon;Ho, Jo Jae;Youl, Chun Jae
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.620-621
    • /
    • 2015
  • In this study, the multi-criteria decision-making model based on Quality Function Deployment Method is proposed. Multicriteria decision-making is an attempt to link QFD method with the TOPSIS. By this effort, a model that makes client's decision-making more rational and objective in design phase is suggested. The multi-criteria decisionmaking model confirming to the Owner's requirements will improve the productivity of the construction industry and the satisfaction of the customer. Further study extending the range of the requirements, not only the Owner's requirement will be necessary to cover the various factors as much as possible. And then, finally as a flexible platform to achieve a sustainable quality management, web-based multi-criteria decision-making model can be utilized by the relevant stakeholders simultaneously with the feed-back and sharing the necessary informations.

  • PDF

Identification of 18 flutter derivatives by covariance driven stochastic subspace method

  • Mishra, Shambhu Sharan;Kumar, Krishen;Krishna, Prem
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.159-178
    • /
    • 2006
  • For the slender and flexible cable supported bridges, identification of all the flutter derivatives for the vertical, lateral and torsional motions is essential for its stability investigation. In all, eighteen flutter derivatives may have to be considered, the identification of which using a three degree-of-freedom elastic suspension system has been a challenging task. In this paper, a system identification technique, known as covariance-driven stochastic subspace identification (COV-SSI) technique, has been utilized to extract the flutter derivatives for a typical bridge deck. This method identifies the stochastic state-space model from the covariances of the output-only (stochastic) data. All the eighteen flutter derivatives have been simultaneously extracted from the output response data obtained from wind tunnel test on a 3-DOF elastically suspended bridge deck section-model. Simplicity in model suspension and measurements of only output responses are additional motivating factors for adopting COV-SSI technique. The identified discrete values of flutter derivatives have been approximated by rational functions.

Modal Parameter Estimations of Wind-Excited Structures based on a Rational Polynomial Approximation Method (유리분수함수 근사법에 기반한 풍하중을 받는 구조물의 동특성 추정)

  • Kim, Sang-Bum;Lee, Wan-Soo;Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.287-292
    • /
    • 2005
  • This paper presents a rational polynomial approximation method to estimate modal parameters of wind excited structures using incomplete noisy measurements of structural responses and partial measurements of wind velocities only. A stochastic model of the excitation wind force acting on the structure is estimated from partial measurements of wind velocities. Then the transfer functions of the structure are approximated as rational polynomial functions. From the poles and zeros of the estimated rational polynomial functions, the modal parameters, such as natural frequencies, damping ratios, and mode shapes are extracted. Since the frequency characteristics of wind forces acting on structures can be assumed as a smooth Gaussian process especially around the natural frequencies of the structures according to the central limit theorem (Brillinger, 1969; Yaglom, 1987), the estimated modal parameters are robust and reliable with respect to the assumed stochastic input models. To verify the proposed method, the modal parameters of a TV transmission tower excited by gust wind are estimated. Comparison study with the results of other researchers shows the efficacy of the suggested method.

  • PDF

The Improvement of RFM RPC Using Ground Control Points and 3D Cube

  • Cho, Woo-Sug;Kim, Joo-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1143-1145
    • /
    • 2003
  • Some of satellites such as IKONOS don't provide the orbital elements so that we can’ utilize the physical sensor model. Therefore, Rational Function Model(RFM) which is one of mathematical models could be a feasible solution. In order to improve 3D geopositioning accuracy of IKONOS stereo imagery, Rational Polynomial Coefficients(RPCs) of the RFM need to be updated with Ground Control Points(GCPs). In this paper, a method to improve RPCs of RFM using GCPs and 3D cube is proposed. Firstly, the image coordinates of GCPs are observed. And then, using offset values and scale values of RPC provided, the image coordinates and ground coordinates of 3D cube are initially determined and updated RPCs are computed by the iterative least square method. The proposed method was implemented and analyzed in several cases: different numbers of 3D cube layers and GCPs. The experimental results showed that the proposed method improved the accuracy of RPCs in great amount.

  • PDF

Fundamental restrictions for the closed-loop control of wind-loaded, slender bridges

  • Kirch, Arno;Peil, Udo
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.457-474
    • /
    • 2009
  • Techniques for stabilising slender bridges under wind loads are presented in this article. A mathematically consistent description of the acting aerodynamic forces is essential when investigating these ideas. Against this background, motion-induced aerodynamic forces are characterised using a linear time-invariant transfer element in terms of rational functions. With the help of these functions, the aeroelastic system can be described in the form of a linear, time-invariant state-space model. It is shown that the divergence wind speed constitutes an upper bound for the application of the selected mechanical actuators. Even active control with full state feedback cannot overcome this limitation. The results are derived and explained with methods of control theory.