• Title/Summary/Keyword: Ratio of Viscosity

Search Result 1,008, Processing Time 0.026 seconds

A Study on Rheological Properties of Polypropylene/Polycarbonate Blends (폴리프로필렌/폴리카보네이트 블렌드의 유변학적 성질에 관한연구)

  • 이재식
    • The Korean Journal of Rheology
    • /
    • v.8 no.2
    • /
    • pp.119-128
    • /
    • 1996
  • 폴리프로필렌(PP)/폴리카보네이트(PC) 블렌드의 유변학적 고찰을 통해 블렌드의 수 축현상과 분상상의 변형의 연관성을 연구했다. 블렌드의 수축현상은 압축과정에서 변형됐던 분산상이 고온에서 다시 원래의 무변형 상태로 복귀하면서 나타나는 탄성변형의 풀림으로 추정되고 압출팽윤의 데이터와도 부합된다. 압출온도를 최대한 낮게 해서(25$0^{\circ}C$) 제조한 블 렌드의 경우가 최대한 높게 한 경우 (29$0^{\circ}C$)보다 수축이더 큰 사실을 설명하기 위하여 순수 PC와 PP의 전단점도비와 신장점도비를 측정 비교한 결과 두 값이 공히 높은 온도의 경우 가 오히려 작게 되어 점성에 의한 분산상의 전단변형이나 신장변형이 수축의 원인이 아니라 는 것을 알아다. 한편 법선응력과 전단응력의 데이터로부터 얻은 물질풀림시간의 비는 낮은 온도의 경우가 작아서 수축현상이 분산상의 탄성에 의한 변형이라는 것을 확인했다.

  • PDF

Evaluation of the Groutability through Microcrack and Viscosity Measurement Methods for Grouting Materials (미세균열 그라우팅 주입성능 및 재료의 점도 측정방법 평가)

  • Jin, Hyun-Woo;Ryu, Byung-Hyun;Lee, Jang-Guen
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.23-34
    • /
    • 2017
  • In order to develop urban underground spaces, even microcracks should be reinforced. In this paper, the grouting injection performance for microcracks was investigated considering the viscosity and particle size of the grouting materials, injection pressure, and crack width. There are two types of typical grouting materials used for filling micro-cracks. One is a chemical liquid grouting material which is a solution type and the other is a cementitious grouting material which is a suspension type. The injection performance of the grouting materials for microcracks is generally influenced by the viscosity, and the injection performance of the cementitious grouting material is additionally affected by the particle size. From laboratory tests, the viscosity was calculated inversely to provide a suitable viscosity measurement method for each grouting material. The groutability ratio based on the relationship between the crack width and the particle size was evaluated to estimate the grouting feasibility of the cementitous grouting material through microcracks.

A Study on Recycling of EPDM Reclaimed Rubber (폐 EPDM 고무의 재활용을 위한 기초적 연구)

  • Jang, Doo-Hee;Kim, Ji-Hoon;Kim, Young-Ju
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.365-370
    • /
    • 2010
  • In this study, we carried out the evaluation of EPDM(Ethylene Propylene Diene Monomer) reclaimed rubber mixing with natural rubber at various mixing ratio to reuse as rubber filler. The scorch time and moony viscosity was analyzed to evaluate the effect of cure behavior. And also, we analyzed the tensile strength, the elongation at break and cure time to evaluate the variation of cure behavior. As the results, the scorch time and optimal cure time was decreased according to the increasing of EPDM reclaimed rubber. However, the moony viscosity was increased at each mixing ratio. In case of the added EPDM reclaimed rubber was 20 phr(parts by weight per 100 parts by weight of rubber), the hardness and specific gravity was increased a little. The hardness and specific gravity was increased in rapidly under 40 phr of the added EPEM reclaimed rubber. The tensile strength and elongation at break of the compound of natural and EPDM reclaimed rubber was rapidly decreased compared with its natural rubber when the ratio of adding EPDM reclaimed rubber was over 40 phr.

A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent (증점제를 사용한 저분체 고유동 콘크리트의 특성에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.689-696
    • /
    • 2017
  • The practical applications of ordinary high-fluidity concrete have been limited due to several drawbacks, such as high hydration heat, high amount of shrinkage, and non-economic strength development. On the other hand, due to its advantages, such as improvement of construction quality, reduction of construction cost and period, the development of high-fluidity concrete is a pressing need. This study examined the properties of high-fluidity concrete, which can be manufactured on the low binders using a viscosity agent to prevent the segregation of materials. The optimal viscosity agent was selected by an evaluation of the mechanical properties of high-fluidity concrete among six viscosity agents. The acrylic type and urethane type viscosity agents showed the best performance within the range where no material separation occurred. The mechanical properties were evaluated to examine the optimal amount of AC and UT viscosity agent added by mixing two viscosity agents according to the adding ratio and blending them together with high performance water reducing agent. When the ratio of the AC : UT viscosity agents was 5:5, it was most suited for high-fluidity concrete with low binders by increasing the workability and effect of the reducing viscosity.

An Experimental Investigation on Spray Behavior of Biodiesel and DME on Blended Ratio in High Temperature and Pressure Ambient Conditions (고온 고압 분위기 조건에서 바이오 디젤과 DME의 혼합비에 따른 분무특성에 관한 연구)

  • Bang, Seung-Hwan;Chon, Mun-Soo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • The objective of this work is to analyze the macroscopic behavior of spray and injection characteristics on the DME blended biodiesel at different mixing ratios by using spray visualization and injection rate measurement system. The spray images were analyzed to a spray tip penetration, a spray cone angle and a spray area distribution at various mixing ratio of DME by weight. The influence of different injection pressure and ambient pressure on the fuel spray characteristics are investigated for the various injection parameters. In order to analyze the injection characteristics of test fuels, the fuel injection rate is measured at various blending ratio. The variation of viscosity of the blended fuel by the mixing of DME fuel shows the improved effect of spray developments. Also, it was found that the injection quantities of high blended ratio were larger than that of lower blended fuel. Also, higher blending fuel showed a faster evaporation than that of mixing ratio of test fuel because kinetic viscosity was changed by blending ratio.

Sensory Properties and Viscosity of Bechamel Sauce by Cooking Methods and Ratio of Raw Materials (조리 방법과 재료 배합비에 따른 Bechamel Sauce의 특성)

  • Oh, Chan
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.4
    • /
    • pp.307-311
    • /
    • 2000
  • Sauces are various combination of ingredients mixed together, usually cooked, and in some stage of liquidity. Sauces are used to enhance the flavor of food dishes and to hold ingredients together while a food dish is being cooked. A cooked sauce is combination of a fat, thickener, and liquid. The degree of thickness of the sauce will vary with the proportions of the ingredients. the gelling characteristics of the thickener, and the length of the cooking time. The purpose of this study was to investigate the sensory properties and viscosity of a medium Bechamel sauce differing from cooking methods and ratio of raw materials. Objective evaluation was done by viscometer and line spread chart. Sensory evaluation was done by a panel of 8 judges majoring in food and nutrition. Viscosity of Bechamel sauce was decreased by increasing the amount of milk. Spreadability was increased by increasing the amount of milk, Vice versa. As a result of the sensory evaluation for Bechamel sauce made with various levels of milk, Bechamel sauce having mixture ratio of 1 butter, 1 flour, and 17 milk was the most preferable. Sauteing onion with butter was the most desirable method.

  • PDF

Conversion of Rapeseed Oil Containing Palmitic Acid into Biodiesel by Acid/Alkali Catalysts (산/알칼리 촉매에 의한 팔미트산 함유 유채유의 Biodiesel화)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.300-306
    • /
    • 2006
  • The esterification of palmitic acid in rapeseed oil and methanol emulsified by propylene glycol with PTSA(p-toluene sulfonic acid) was followed by the transesterification of rapeseed oil into biodiesel with 1(w/v)% GMS(glycerol monostearate) as an emulsifier using TMAH(tetramethyl ammonium hydroxide) catalysts at $60^{\circ}C$. The former reaction was optimized at the 1:20 of molar ratio of oil to methanol and 5wt% PTSA, and the latter was optimized at the 1:8 of molar ratio of oil to methanol and 0.8wt% TMAH. The overall conversion into biodiesel was 98% after 60min of reaction time at the 1:8 of molar ratio, 0.8wt% TMAH and $60^{\circ}C$. TMAH was a good catalyst to control the viscosity of biodiesel mixture.

Preparation of Heating Fuel by the Recycling of High Viscosity Waste Oil (고점도 폐유의 재활용에 의한 난방연료 제조)

  • Jin, Eui;Chung, Yeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.411-415
    • /
    • 2009
  • To replace waste oil with the lowest grade which has high viscosity into heating fuel, light oil and buncker C oil in waste oil was used and the fuel characteristic was analyzed by its concentration after mixing oil. The mixture conditions were controlled by the reaction time (30 s~30 min) and kept by the reaction temperature ($75{\pm}5^{\circ}C$) when mixing speed was stirred at 3400~3600 rpm. We used the buncker C oil and light oil to decrease viscosity of waste oil and the dynamic viscosity was decreased by 81~96%. Optimum mixing ratio (waste oil : buncker C oil : light oil) as heating fuel was 1 : 1 : 1. Flash point, dynamic viscosity and heating value of this case were identified $78^{\circ}C$, $20.02mm^{2}/s$, 9158 kcal/L respectively.

Robust Design of an ER Damper using Taguchi Method (다구찌법을 이용한 ER 댐퍼의 강건 설계)

  • 윤영민;배광식;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • This Paper presents a robust design of an Electrorheological(ER) damper using Taguchi method. Taguchi method is a robust design method that determines control parameters in the presence of noise effect. Electrode length, electrode gap, base oil viscosity and the weight ratio of ER particles are chosen for the control parameters and the temperature is considered to be a noise factor. The sensitivity of each factor with signal-to-noise(S/N) ratio and analysis of variance are investigated. The analysis results show that the electrode length and base oil viscosity of the ER fluid mostly affect the damping force in the absence of electric field. On the other hand, when the voltage is applied to the ER damper, the electrode length and the weight ratio of ER fluid exhibit significant effect. Based on the Taguchi method, an optimal configuration was designed and the robustness of the designed ER damper was validated by comparing the analysis and experimental results.

  • PDF

Characteristics of High-viscosity Grouting Materials for Rock Joint Reinforcement of Deep Tunnel (대심도 터널 암반 절리 보강을 위한 고점도 그라우팅 재료의 특성)

  • Yoon, Inkook;Moon, Junho;Lee, Junsu;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.59-63
    • /
    • 2021
  • This study presented the characteristics and additive effects of the grout with mixing ratio for developing of high-efficiency grouting technology under high depth conditions. The laboratory investigation were conducted with Portland cement (OPC) and micro cement (S8000-E) including viscosity experiments, particle size analysis experiments, Gel-Time experiments and uniaxial compressive strength experiments. As a result of the viscosity experiment, it was shown that OPC is advantageous in terms of viscosity, but S8000-E is suitable when considering the passage of rock joint intervals through particle size analysis. The Gel-Time experiment shows that it is not that difficult with injection as a grout material even when silica fume (SF) was applied. The strength of the cured material is improved as increase in the content of silica fium (SF). Within the range of the study, the optimal mixing ratio obtained through various experiments is S8000-E, w/c=70%, silica fium (SF)=6%, and 7 days.