• 제목/요약/키워드: Ratio of Reinforcement Bars

검색결과 130건 처리시간 0.035초

Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate

  • Ju, Minkwan;Park, Kyoungsoo;Lee, Kihong;Ahn, Ki Yong;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.399-405
    • /
    • 2019
  • The present study assessed the reliability-based reinforcement ratio of FRP reinforced concrete structure applying recycled coarse aggregate (RCA) concrete. The statistical characteristics of FRP bars and RCA concrete were investigated from the previous literatures and the mean value and standard deviation were employed for the reliability analysis. The statistics can be regarded as the material uncertainty for configuring the probability distribution model. The target bridge structure is the railway bridge with double T-beam section. The replacement ratios of RCA were 0%, 30%, 50%, and 100%. From the probability distribution analysis, the reliability-based reinforcement ratios of FRP bars were assessed with four cases according to the replacement ratio of RCA. The reinforcement ratio of FRP bars at RCA 100% showed about 17.3% higher than the RCA 0%, where the compressive strength at RCA 100% decreased up to 27.5% than RCA 0%. It was found that the decreased effect of the compressive strength of RCA concrete could be compensated with increase of the reinforcement ratio of FRP bars. This relationship obtained by the reliability analysis can be utilized as a useful information in structural design for FRP bar reinforced concrete structures applying RCA concrete.

Experimental and numerical analysis of the punching behavior of RC isolated footings

  • Walid, Mansour;Sabry, Fayed;Ali, Basha
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.665-682
    • /
    • 2022
  • In the current study, punching behavior of Reinforced concrete (RC) isolated footings was experimentally and numerically investigated. The experimental program consisted of four half-scale RC isolated footing specimens. The test matrix was proposed to show effect of footing area, reinforcement mesh ratio, adding internal longitudinal reinforcement bars and stirrups on the punching response of RC isolated footings. Footings area varied from 1200×1200 mm2 to 1500×1500 mm2 while the mesh reinforcement ratio was in the range from 0.36 to 0.45%. On the other hand, a 3D non-linear finite element model was constructed using ABAQUS/standard program and verified against the experimental program. The numerical results agreed well with the experimental records. The validated numerical model was used to study effect of concrete compressive strength; longitudinal reinforcement bars ratio and stirrups concentration along one or two directions on the ultimate load, deflection, stiffness and failure patterns of RC isolated footings. Results concluded that adding longitudinal reinforcement bars did not significantly affect the punching response of RC isolated footings even high steel ratios were used. On the contrary, as the stirrups ratio increased, the ultimate load of RC isolated footings increased. Footing with stirrups ratio of 1.5% had ultimate load equal to 1331 kN, 19.6% higher than the bare footing. Moreover, adding stirrups along two directions with lower ratio (0.5 and 0.7%) significantly enhanced the ultimate load of RC isolated footings compared to their counterparts with higher stirrups ratio (1.0 and 1.5%).

Pullout Test of Headed Reinforcement 2: Deep Embedment

  • Choi, Dong Uk;Shin, InYong
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.1091-1096
    • /
    • 2003
  • Pullout tests of single headed bars using plain concrete blocks indicate that the embedment depth of $10d_b$ is in general required for the headed bars to develop pullout strength equivalent to 125% of bar yield strength. In this experimental study, test results of multiple headed bars installed in reinforced concrete column sections are presented. Test variables included embedment depth, column main reinforcement ratio, and spacing of column ties. 2D29 bars were pulled out at one time from normal strength concrete. Test results indicated that the embedment depths, column tie spacings, and column main reinforcement ratios all influenced the pullout strengths of the headed bars. When the embedment depth was not sufficient, narrow tie spacings especially resulted in increased pullout strengths of the headed bars. Test results also indicated that the embedment depth of 15㏈ was sufficient for the closely spaced two headed bars (head-to-head spacing =$6d_b$) to develop pullout strength equivalent to 125% of the bar yield strength.

  • PDF

Hybrid Reinforcement System을 이용한 콘크리트 교량상판 슬래브의 거동 (Behavior of Concrete Bridge Deck Using Hybrid Reinforcement System)

  • 박상렬;조근희
    • 콘크리트학회논문집
    • /
    • 제16권4호
    • /
    • pp.451-458
    • /
    • 2004
  • 본 연구는 재래 철근과 Fiber Reinforced Polymer 보강재를 사용한 Hybrid Reinforcement System의 기본 개념과 적용성에 대해 기술하고 있다. 콘크리트 교량상관은 보로서 지지되고 상하 두층의 보강재로 인장보강되어 있다. HRS를 이용한 콘크리트 교량상판에서는 보 지지점 부근의 부모멘트에 대한 상부 인장력은 FRP 봉으로 저항하고 보 지지점 중앙부근의 하부인장력은 재래의 철근으로 저항한다. HRS를 이용한 콘크리트 교량상판은 FRP 봉은 비 부식성이고, 부식되기 쉬운 철근은 교량상판 위로부터 가급적 멀리하여 부식물질의 침투를 막을 수 있는 장점이 있다. HRS를 이용한 콘크리트 교량상판은 또한 극한상태에서 충분한 연성을 가지고 있다. 그 이유는 1) FRP봉은 철근보다 탄성계수가 낮고 파단시의 최대 변형률이 크며, 2) 충분한 FRP 보강량을 사용하면 극한변형률을 낮출 수 있으며, 3) 부모멘트 구간의 일부를 비부착시켜 극한 변형률을 낮출 수 있다. 실험 연구 결과 보통의 FRP보강비의 범위에서는 FRP 및 HRS 콘크리트 슬래브는 FRP봉의 파단이 아니라 콘크리트의 압축에 의해 파피됨을 보여주고 있다. 그러므로 HRS를 이용한 연속 콘크리트 교량상관에서는 정모멘트부의 하부철근이 먼저 항복하여 소성힌지를 형성하고 나중에 부보멘트나 정모멘트부의 콘크리트가 압축파괴되어 FRP 콘크리트 슬래브에 비하여 상당한 소성에너지를 소모한다.

The effect of tensile reinforcement on the behavior of CFRP strengthened reinforced concrete beams: An experimental and analytical study

  • Javad Sabzi;M. Reza Esfahani;Togay Ozbakkaloglu;Ahmadreza Ramezani
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.115-132
    • /
    • 2023
  • The present study experimentally and analytically investigates the effect of tensile reinforcement ratio and arrangement on the behavior of FRP strengthened reinforced concrete (RC) beams. The experimental part of the program was comprised of 8 RC beams that were tested under four-point bending. Results have shown that by keeping the total cross-section area of tensile reinforcing bars constant, in specimens with a low reinforcement ratio, increasing the number and decreasing the diameter of bars in the section lead to 21% and 29% increase in the load-carrying capacity of specimens made with normal and high compressive strength, respectively. In specimens with high reinforcement ratio, a different behavior was observed. Furthermore, the accuracy of the existing code provisions and analytical models in predicting the load-carrying capacity of the FRP strengthened beams failed by premature debonding mode were evaluated. Herein, a model is proposed which considers the tensile reinforcement ratio (as opposed to code provisions) to achieve more accurate results for calculating the load carrying capacity of FRP strengthened RC beams.

Seismic performance of RC bridge piers reinforced with varying yield strength steel

  • Su, Junsheng;Dhakal, Rajesh Prasad;Wang, Junjie;Wang, Wenbiao
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.201-211
    • /
    • 2017
  • This paper experimentally investigates the effect of yield strength of reinforcing bars and stirrups on the seismic performance of reinforced concrete (RC) circular piers. Reversed cyclic loading tests of nine-large scale specimens with longitudinal and transverse reinforcement of different yield strengths (varying between HRB335, HRB500E and HRB600 rebars) were conducted. The test parameters include the yield strength and amount of longitudinal and transverse reinforcement. The results indicate that the adoption of high-strength steel (HSS) reinforcement HRB500E and HRB600 (to replace HRB335) as longitudinal bars without reducing the steel area (i.e., equal volume replacement) is found to increase the moment resistance (as expected) and the total deformation capacity while reducing the residual displacement, ductility and energy dissipation capacity to some extent. Higher strength stirrups enhance the ductility and energy dissipation capacity of RC bridge piers. While the product of steel yield strength and reinforcement ratio ($f_y{\rho}_s$) is kept constant (i.e., equal strength replacement), the piers with higher yield strength longitudinal bars are found to achieve as good seismic performance as when lower strength bars are used. When higher yield strength transverse reinforcement is to be used to maintain equal strength, reducing bar diameter is found to be a better approach than increasing the tie spacing.

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.

나선형 원형철근으로 보강된 집중배치 텐던 정착구역에 대한 하중전달시험 (Load Transfer Test of Spirally Reinforced Anchorage Zone for Banded Tendon Group)

  • 조아서;강현구
    • 한국공간구조학회논문집
    • /
    • 제17권1호
    • /
    • pp.59-67
    • /
    • 2017
  • In this study, load transfer tests based on KCI-PS101 were conducted to verify the performance of spiral anchorage zone reinforcement for banded post-tensioning (PT) monostrands. With results, the compressive strength of spiral reinforcement was increased by about 20% than that of specimens with two horizontal steel bars and 8% than that of U-shaped bars. Advanced spiral reinforcement for corner increases compressive strength and can resist the spalling forces or fall-out effect at the corner by shear. The ratio of maximum load to amount of steel of the spiral reinforcement is about twice than that of U-shaped reinforcement. With increase of compressive strength capacity and improvement of constructability, the spiral reinforcement is considered to have advantages of promoting the performance of PT anchorage zone compared to conventional methods.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

석조문화재의 풍화물성을 고려한 구조보강방법 연구 (A Study on Structural Reinforcement Suitable for the Weathering Properties of Stone Cultural Heritage)

  • 이동식;김현용
    • 보존과학회지
    • /
    • 제31권4호
    • /
    • pp.477-488
    • /
    • 2015
  • 본 연구에서는 석조문화재에 대한 금속보강재의 최소 개입을 통해 원형부재의 이차 훼손을 줄이고, 동시에 최대의 구조보강 효과를 얻을 수 있도록 제안된 실험을 통해 처리기술의 객관적 기준을 다음과 같이 설정하였다. 첫째, 금속보강재의 설계 기준은 석조문화재의 풍화도에 따라 보강재비의 산정이 이루어져한다. 둘째, 석조문화재의 원형이 부분적으로 훼손되어 형태나 구조적으로 보강이 필요할 때 보형처리(구부재 + 신석재 접합)는 풍화등급이 높은 부재를 기준으로 금속보강재 비율을 계획해야 한다. 본 연구를 바탕으로 석조문화재의 구조적인 안정을 꾀할 수 있는 조건을 고려한 금속보강재 비율을 풍화영역별로 제시하면, 접합단면 대비 $800kgf/cm^2$ 이하는 0.13~0.23, $800kgf/cm^2$ 이상 $1200kgf/cm^2$ 이하는 0.24~0.28, $1200kgf/cm^2$ 이상은 0.29~0.5의 금속보강재비를 권장할 수 있다. 특히 더욱 세분화된 풍화등급에 따른 금속보강재의 적용 여부는 석조물의 파괴계수와 금속보강재의 물성을 고려하여야 할 것으로 사료된다.