• Title/Summary/Keyword: Ratio analysis

Search Result 21,676, Processing Time 0.054 seconds

A Study on the Properties of Foamed Concrete with Plaster Using the Experimental Design (실험계획법을 이용한 석고 혼입 기포콘크리트의 특성에 관한 연구)

  • Lee, Sang-An;Kim, Wha-Jung;Yoon, Sang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.130-137
    • /
    • 2013
  • This research was performed through the experimental design to get the statistical analysis on foamed concrete mixed plaster with hydrogen peroxide. In this experiment, we set the ratio of each material, which part of lightweight concrete, as experimental factors and evaluated on the mechanical properties by statistical analysis for response variables obtained from experiments. Experimental factors are plaster replacement, water binder ratio, and hydrogen peroxide ratio. Response variables are dry density, compressive strength, and flexural strength. Mixing design of the foamed concrete set up a total of 15 experimental points by Box-Behnken (BB) method of the response surface analysis. Thus, the results of a study were summarized as follows. Values of the probability in experimental factors (plaster replacement, water binder ratio and hydrogen peroxide ratio) on the response variables were estimated to be significant at the 95% of confidence limit. On response surface analysis for dry density of foamed concrete, water binder ratio and hydrogen peroxide ratio were estimated to be significant (${\alpha}$ = 0.05), and the relationship between the amount of void and the water content for dry density is inverse proportional. On response surface analysis for the compressive strength of foamed concrete, water binder ratio, hydrogen peroxide ratio and (hydrogen peroxide ratio)$^2$ was estimated to be significant (${\alpha}$ = 0.05). On response surface analysis for the flexural strength of foamed concrete, water binder ratio, hydrogen peroxide ratio was estimated to be significant (${\alpha}$ = 0.05). Through multi response surface analysis, we found the optimal area that meets performance goals.

A Study on the Parameters Determining the Void Crushing Ratio in the Cogging Process of Large Forged Products (대형 단조품 코깅 공정의 기공 압착 인자에 대한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.502-508
    • /
    • 2007
  • Effect of the process parameters of the cogging process on the void crushing has been studied in order to identify the most effective factor. The process parameters considered in this study are die width ratio, reduction ratio and pre-cooling time before cogging process. Void crushing analysis with the selected process parameters was carried out using FE analysis. The results of FE analysis were evaluated by Taguchi method. It was found that the efficiency of void crushing increases with an increase in the values of all selected process parameters and the principal factor controlling the void crushing was identified as the reduction ratio.

Effects of Formaldehyde to Urea Mole Ratio on Thermomechanical Curing of Urea-Formaldehyde Resin Adhesives

  • Park, Byung-Dae;Kim, Jae-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • This study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermomechanical curing of UF resin adhesives with different F/U mole ratios. Thermomechanical curing of these UF resin adhesives was characterized using parameters of dynamic mechanical analysis (DMA) such as the gel temperature, maximum storage modulus, and peak temperatures of storage and loss modulus. As the F/U mole ratio decreased, the gel temperature of UF resin adhesives increased. The maximum storage modulus as an indicator of the rigidity of UF resin adhesives decreased with decreasing F/U mole ratio. The peak temperature of tan $\delta$ increased with decreasing F/U mole ratio, indicating that the vitrification occurred faster for high F/U mole ratio of UF resin adhesives than for the one of lower F/U mole ratio. These results partially explained the reason why UF resin adhesives with lower F/U mole ratio resulted in relatively poor adhesion performance when they were applied.

A Numerical Analysis for the Influential Factors on the Stress Concentration Ratio (모래다짐말뚝지반의 응력분담비에 영향을 미치는 인자에 대한 해석적 연구)

  • Choi, Hyo-Won;Shin, Hyun-Young;Yoo, Han-Kyu;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.966-973
    • /
    • 2005
  • The stress concentration ratio in accordance with area replacement ratios were considered as core elements of design. However, the stress concentration ratio will be vary depends on progress of consolidation in clay ground. And, since it is not sure to know the affecting factors accurately, the value is decided based on field experiences. To use SCP method more effective and correspond to soil improvement, the decision on proper area replacement ratio through the exact stress concentration ratio is very important. Accordingly, a numerical analysis on influence of various factors that needed to make rational designing guide for decision of proper area replacement ratio to stress concentration ratio was executed in this study.

  • PDF

Finite Element Analysis to Micro-structure with Negative Poisson's ratio (음의 프와송 비를 갖는 미세 구조체에 대한 유한요소해석)

  • 이문규;최귀원;최재봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.694-697
    • /
    • 2003
  • Materials with specific micro-structural shape can exhibit negative Poisson's ratio. These materials can be widely used in structural applications because of their high resilience and resistance to impact. Specially, in the field of artificial implant's material, they have many potential applications. In this study, we investigated the Poisson's ratio and the ratio(E$_{e}$/E) of the elastic modulus of rotational particle structures based on structural design variables using finite element method. As the ratio of fibril's length to particle's diameter increased and the ratio of fibril's diameter to fibril's length decreased fixing the fibril's angle with 45 degree. the negative Poisson effect of rotational particle structures increased. The ratio of elastic modulus of these structures decreased with Poisson's ratio. The results show the reasonable values as compared with the previous analytical results.s.

  • PDF

MPA-based IDA Using the Inelastic Displacement ratio, CR and the Collapse Intensity, RC (비탄성변위비와 붕괴강도비를 이용한 MPA기반의 IDA 해석법)

  • Han, Sang-Whan;Seok, Seung-Wook;Lee, Tae-Sub
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.33-39
    • /
    • 2010
  • This study develops an approximate procedure for incremental dynamic analysis (IDA) using modal pushover analysis (MPA) with empirical equations of the inelastic displacement ratio ($C_R$) and the collapse strength ratio ($R_C$). By using this procedure, it is not required to conduct linear or nonlinear response history analyses of multi- or single- degree of freedom (MDF) systems. Thus, IDA curves can be effortlessly obtained. For verification of the proposed procedure, the 6-, 9- and 20-story steel moment frames are tested under an ensemble of 44 ground motions. The results show that the MPA-based IDA with empirical equations of $C_R$ and $R_C$ produced accurate IDA curves of the MDF systems. The computing time is almost negligible compared to the exact IDA using repeated nonlinear response history analysis (RHA) of a structure and the original MPA-based IDA using repeated nonlinear RHA of modal SDF systems.

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.

A Study About Critical Flow Characteristics and the Pipeline Network Modeling of a Pressure Regulator (II) - The Influence of a Opening Ratio - (정압기의 임계유동 특성과 배관망해석 모델링에 관한 연구 (II) - 개도비 영향 -)

  • Shin Chang Hoon;Ha Jong Man;Lee Cheol Gu;Her Jae Young;Im Ji Hyun;Joo Won Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1299-1306
    • /
    • 2005
  • The suitable pressure regulator modeling at each opening ratio and pressure ratio is very important to obtain reliable results, especially in small scale pipeline network analysis such as a pressure regulator system. And it is needed to confirm both whether temperature recovery is achieved after passing by the pressure regulator's narrow neck and how much amount of low temperature area that can cause condensate accumulation is distributed by various PCV models and driving conditions. In this research, the numerical model resembling P company pressure regulator that is used widely for high pressure range in commercial, is adopted as the base model of CFD analysis to investigate pressure regulator's flow characteristics at each pressure ratio and opening ratio. And it is also introduced to examine pressure regulator's critical flow characteristics and possibility of condensation or freezing at each pressure ratio and opening ratio. Additionally, the comparison between the results of CFD analysis and the results of analytic solution obtained by compressible fluid-dynamics theory is attempted to validate the results of CFD modeling in this study and to estimate the accuracy of theoretical approach at each pressure ratio and opening ratio too.

A Case-Control Study for Risk Factor Related to Hypertension (고혈압의 위험요인에 대한 환자-대조군 연구)

  • Kam, Sin;Yeh, Min-Hae;Lee, Sung-Kook;Chun, Byung-Yeol
    • Journal of Preventive Medicine and Public Health
    • /
    • v.24 no.2 s.34
    • /
    • pp.221-231
    • /
    • 1991
  • A case-control study was conducted to investigate the risk factors (Part of job, Obesity, Alcohol, Smoking, Milk, Salt. and Family history) for hypertension. We selected 330 hypertension cases (male;247, female;83) and 1,336 controls (male;887, female;449) from employees in Taegu city from 1 May to 30 November, 1908. Data was analysed using a logistic regression model. Statistically significant elevated odds ratio were noted for alcohol (odds ratio=3.23), obesity (odds ratio=2.31), salt(odds ratio=1.75) in male (p<0.05) and those in female were noted for alcohol (odds ratio=16.49), family history(odds ratio=3.70), obesity (odds ratio=1.74) and salt (odds ratio=1.73) (p<0.05). Statistically significant reduced odds ratio was noted for milk in both sexes (odds ratio=0.69 for male and 0.65 for female)(p<0.05) and the dose-response relationship between milk intake and hypertension was confirmed (p<0.05). Therefore, milk seems to be preventive factor for hypertension. Smoking was not significantly associated with hypertension in both sexes. The part of job was significantly associated with hypertension in female by simple analysis (P<0.05) but the relationship was disappeared when multivariate analysis (logistic regression analysis) was done.

  • PDF

Seismic analysis of RC tubular columns in air-cooled supporting structure of TPP

  • Wang, Bo;Yang, Ke;Dai, Huijuan;Bai, Guoliang;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.581-598
    • /
    • 2020
  • This paper aims to investigate the seismic behavior and influence parameters of the large-scaled thin-walled reinforced concrete (RC) tubular columns in air-cooled supporting structures of thermal power plants (TPPs). Cyclic loading tests and finite element analysis were performed on 1/8-scaled specimens considering the influence of wall diameter ratio, axial compression ratio, longitudinal reinforcement ratio, stirrup reinforcement ratio and adding steel diagonal braces (SDBs). The research results showed that the cracks mainly occurred on the lower half part of RC tubular columns during the cyclic loading test; the specimen with the minimum wall diameter ratio presented the earlier cracking and had the most cracks; the failure mode of RC tubular columns was large bias compression failure; increasing the axial compression ratio could increase the lateral bearing capacity and energy dissipation capacity, but also weaken the ductility and aggravate the lateral stiffness deterioration; increasing the longitudinal reinforcement ratio could efficiently enhance the seismic behavior; increasing the stirrup reinforcement ratio was favorable to the ductility; RC tubular columns with SDBs had a much higher bearing capacity and lateral stiffness than those without SDBs, and with the decrease of the angle between columns and SDBs, both bearing capacity and lateral stiffness increased significantly.