• 제목/요약/키워드: Ratio Valve

검색결과 558건 처리시간 0.025초

나선형 포트를 적용한 광각엔진에서 실린더 내 압축 유동 특성 (In-Cylinder Compression Flow Characteristics of Helical Port Engines with Wide Valve Angle)

  • 엄인용;박찬준
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.9-16
    • /
    • 2009
  • This paper is the second of 2 companion papers which investigate in-cylinder swirl generation characteristics in helical port engine with wide valve angle. Two wide valve-angle engines, which are same ones and have slightly different rig swirl number, were used to compare the characteristics of cylinder-flow. One intake port is deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field during intake stroke. The results show that the intake flow component passing through valve area near the cylinder wall is not negligible in helical port engine with wide valve angle contrary to conventional one. The effect of this velocity component on in-cylinder increases as the swirl ratio rises and compression process progresses. Consequently, this component destroys in-cylinder swirl flow completely during compression resulting in no actual swirl at the end stage of compression.

나선형 포트를 적용한 광각엔진에서 실린더 내 흡입 유동 특성 (In-Cylinder Intake Flow Characteristics of Helical Port Engines with Wide Valve Angle)

  • 엄인용;박찬준
    • 대한기계학회논문집B
    • /
    • 제32권10호
    • /
    • pp.761-768
    • /
    • 2008
  • This paper is the first of 2 companion papers which investigate in-cylinder swirl generation characteristics in helical port engine with wide valve angle. Two wide valve-angle engines, which are same ones and have slightly different rig swirl number, were used to compare the characteristics of cylinder-flow. One intake port is deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field during intake stroke. The results show that the intake flow component passing through valve area near the cylinder wall is not negligible in helical port engine with wide valve angle contrary to conventional one. The effect of this velocity component on in-cylinder increases as the swirl ratio rises and intake process progresses. Consequently, this component interferes the formation of in-cylinder swirl flow resulting in lower actual swirl.

P-라인을 이용한 압력제어방식 CVT 변속비제어밸브 설계 (Design of Ratio Control Valve for a Pressure Control Type CVT Using P-Line)

  • 류완식;이용준;김현수
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.145-151
    • /
    • 2004
  • In this paper, a pressure control type ratio control valve(RCV) is designed for a metal belt CVT. Steady state and transient characteristics of the pressure control CVT are investigated by simulations and experiments. In addition, P-line is proposed to predict the shift performance. It is found that the bigger the pressure margin, the faster the shift response. It is expected that the P-line can be used in design of the RCV to meet the desired shift performance.

기술사마당: 엔진 가변 밸브 기구 이해 및 개발동향 (Professional Engineer Yard: Understanding of Engine Variable Valve Train Technology and Trend)

  • 김도완
    • 기술사
    • /
    • 제44권4호
    • /
    • pp.39-43
    • /
    • 2011
  • To cope with recent high gas prices and global warming phenomenon, the latest gasoline engine technologies are focusing on direction injection, downsizing by turbo charging, variable compression ratio, controlled auto Ignition to enhance fuel efficiency and satisfy emission regulations. The variable valve train technology will be a basement for these innovative technologies in internal combustion engines and is supposed to play a key role to improve low thermal efficiency and pumping loss in gasoline engine caused by low compression ratio and throttled operation respectively.

  • PDF

미터링 오리피스 압력 진폭을 이용한 방향제어밸브 대역폭 주파수에 관한 연구 (A Study on the Bandwidth Frequency of Directional Control Valves based on the Amplitude of the Metering-Orifice Pressure)

  • 김성동;전세형;신대영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.1-8
    • /
    • 2017
  • The spool displacement of a directional control valve can be considered as the standard signal for the measurement of its bandwidth frequency. When the spool displacement is not available, the metering-orifice system is suggested in this study as an alternative way to measure the - 3 dB amplitude-ratio bandwidth frequency of the hydraulic directional-control valve. The amplitude ratio of the metering-orifice pressure can be adjusted to equal that of the spool displacement through the controlling of the metering-orifice opening area. A series of experiments were conducted to verify the effectiveness of the metering-orifice system. The metering orifice was confirmed as adequate for the measurement of the - 3 dB amplitude-ratio bandwidth frequency.

Size and Aspect Ratio Effects on the Magnetic Properties of a Spin-Valve Multilayer by Computer Simulation

  • Lim, S.H.;Han, S.H.;Shin, K.H.;Kim, H.J.
    • Journal of Magnetics
    • /
    • 제5권3호
    • /
    • pp.90-98
    • /
    • 2000
  • The change in the magnetic properties of a spin-valve multilayer with the structure IrMn (9 m)/CoFe (4 nm)/Cu (2.6 nm)/CoFe (2 nm)/NiEe (6 nm) is investigated as a function of the size and the aspect ratio. At a fixed aspect ratio (the length/width ratio) of 2, the magnetostatic interactions begin to affect the magnetic properties substantially at a spin-valve length of 5 $\mum$, and, at a length of 1 $\mum$, they become even more dominant. In the case of a fixed multilayer size (2.4 $\mum$) which is indicated by the sum of the length and the width, magnetization change occurs by continuous spin-reversal and M-H loops are characterized by no or very small hysteresis at aspect ratios smaller than unity, At aspect ratios greater than unity, magnetization change occurs by spin-flip resulting in squared hysteresis loops. A very large changes in the coercivity and the bias field is observed, and these results are explained by two separate contributions to the total magnetostatic interactions: the coercivity by the self-demagnetizing field and the bias field by the interlayer magnetostatic interaction field.

  • PDF

밸브 닫힘각 변화에 따른 버터플라이밸브의 손실계수 평가 (Evaluation of Loss Coefficient of a Butterfly Valve with Valve Closed Angles)

  • 이지근;노병준;최희주
    • 한국항공우주학회지
    • /
    • 제36권1호
    • /
    • pp.14-21
    • /
    • 2008
  • 밸브 디스크 직경이 25.4 mm 인 소형 버터플라이밸브의 유동특성이 다양한 밸브 닫힘각에 대해 실험적으로 연구되었다. 밸브 디스크각이 작은 경우 유량조절특성을 향상시키기 위해 주어지는 밸브 닫힘각을 0$^{\circ}$, 5$^{\circ}$, 10$^{\circ}$, 20$^{\circ}$, 30$^{\circ}$로 변화시켜 밸브 디스크각에 따른 손실계수를 측정하였다. 또한 밸브선단 형상이 손실계수 변화에 미치는 영향을 조사하였다. 밸브 닫힘각이 증가함에 따라 최대손실계수는 감소하며, 밸브 닫힘각 0$^{\circ}$~5$^{\circ}$에서 가장 큰 감소를 나타냄을 알 수 있었다. 밸브 디스크 형상에 따른 손실계수는 밸브 닫힘각이 0$^{\circ}$인 경우 날카로운 모서리를 갖는 디스크가 더 큰 손실계수를 나타낸 반면, 닫힘각 10$^{\circ}$의 경우 날카로운 모서리를 갖는 디스크의 경우가 더 낮은 손실계수를 나타냄을 알 수 있었다.

EGR 밸브 평가 장치 개발을 위한 EGR 장착 엔진 성능 및 배출 가스 특성 연구 (A Study on Exhaust Gas Characteristics and Engine Performance of EGR Valve Installed Engine for Development of EGR Valve Test System)

  • 나동하;고춘식;서형준;이창언
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.52-57
    • /
    • 2012
  • In this study, in order to understand contents and ranges of design for the EGR Valve test system for improving quality and performance of EGR Valve, engine performance and exhaust gas characteristic of 3L-class diesel engine was analyzed. Experimental operation of engine performance test was performed with 50% engine load and 20% and 100% opening ratio of EGR Valve. From test of performance and exhaust gas characteristic of engine, torque output of engine and temperature and pressure of inlet and outlet of EGR Valve were measured. As a result, for design of EGR Valve test system, input fluid flow of EGR Valve must be set the same amount with exhaust gas flow that was below of engine speed of 2,500 rpm, and temperature of inlet of EGR Valve must be set under about $510^{\circ}C$. And the difference of temperature between inlet and outlet of EGR Valve must be over than about $200^{\circ}C$. Exhaust gas of inlet and outlet of EGR Valve were under 1 bar that was not considerable, and the difference of pressure between inlet and outlet of EGR Valve were under 1 bar that could not effect on mechanical operation of EGR Valve.

2방향 전자밸브의 PWM 신호에 의한 압력제어 특성 (Pressure Control Characteristics of a 2-Way Solenoid Valve Driven by PWM Signal)

  • 정헌술;김형의
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1565-1576
    • /
    • 2002
  • By way of driving a 2-way on/off solenoid hydraulic valve with a pulse width modulation (PWM) signal, control of the pressure in a certain volume is frequently used in various applications. However, the pressure built-up according to the duty ratio and carrier frequency of the PWM signal is not so well understood. In order to clarify the characteristics of 2-way valve hydraulic pressure control systems, in this paper two formula fur the mean and ripple of the load pressure were derived through theoretical analysis. And the accuracy of the derived formula were verified by comparison with the experimental test result. Generally 2-way valve systems are constructed as a bleed-off circuit, while 3-way valves are used as a control element in a meter-in circuit pressure control system. In a bleed-off circuit, the system supply pressure from a hydraulic power pack does not remain constant, but changes according to their external load. In turn, the relief valve in the hydraulic power pack reacts accordingly showing complicated dynamic behavior, which makes an analytical study difficult. In order to resolve the problem, simple but accurate empirical dynamic models fer a bleed-off system were used in the course of formula derivation. As the result, selection criteria for two major control parameters of the driving signal is established and the basic strategy to suppress the unnecessary pressure fluctuation can be provided for a hydraulic pressure control system using a 2-way on/off solenoid valve.

나선형 흡기포트의 유동특성이 과급식 디젤엔진의 성능 및 배출가스에 미치는 영향 (Effects of the Flow Characteristics of Helical Intake Port on the Performance and Emission in a Turbocharged DI Diesel Engine.)

  • 윤준규;양진승;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.86-96
    • /
    • 2000
  • This study is to consider that the helical intake port flow and fuel injection system have effects on the characteristics of engine performance and emissions in a turbocharged DI diesel engine of the displacement 9.4L. The swirl ratio for ports was modified by hand-working and measured by impulse torque swirl meter, For the effects on performance and emission, the brake torque, BSFC were measured by engine dynamometer and NOx, smoke were by gas analyzer and smoke meter. As a result of steady flow test, when the valve eccentricity ratio are closed to cylinder wall, the flow coefficient and swirl intensity are increased, And as the swirl is increased, the mean flow coefficient is decreasing, whereas the gulf factor is increasing. Also, through engine test its can be expected to meet performance and emission by the following applied parameter; the swirl ratio is 2.43, injection timing is BTDC $13^{\circ}$CA and compression is 15.5.

  • PDF