• Title/Summary/Keyword: Ratio Analysis

Search Result 21,645, Processing Time 0.045 seconds

Error Analysis of Equivalence Ratio using Bayesian Statistics (베이지안 확률기법을 이용한 당량비 오차분석에 관한 연구)

  • Ahn, Joongki;Park, Ik Soo;Lee, Ho-il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.131-137
    • /
    • 2018
  • This paper analyzes the probability of failure for the equivalence ratio error. The control error of the equivalence ratio is affected by the aleatory and epistemic uncertainties. In general, reliability analysis techniques are easily incorporated to handle the aleatory uncertainty. However, the epistemic uncertainty requires a new approach, as it does not provide an uncertainty distribution. The Bayesian inference incorporates the reliability analysis results to handle both uncertainties. The result gives a distribution of failure probability, whose equivalence ratio does not meet the requirement. This technique can be useful in the analysis of most engineering systems, where the aleatory and epistemic uncertainties exist simultaneously.

Sasang Constitution Detection Based on Facial Feature Analysis Using Explainable Artificial Intelligence (설명가능한 인공지능을 활용한 안면 특징 분석 기반 사상체질 검출)

  • Jeongkyun Kim;Ilkoo Ahn;Siwoo Lee
    • Journal of Sasang Constitutional Medicine
    • /
    • v.36 no.2
    • /
    • pp.39-48
    • /
    • 2024
  • Objectives The aim was to develop a method for detecting Sasang constitution based on the ratio of facial landmarks and provide an objective and reliable tool for Sasang constitution classification. Methods Facial images, KS-15 scores, and certainty scores were collected from subjects identified by Korean Medicine Data Center. Facial ratio landmarks were detected, yielding 2279 facial ratio features. Tree-based models were trained to classify Sasang constitution, and Shapley Additive Explanations (SHAP) analysis was employed to identify important facial features. Additionally, Body Mass Index (BMI) and personality questionnaire were incorporated as supplementary information to enhance model performance. Results Using the Tree-based models, the accuracy for classifying Taeeum, Soeum, and Soyang constitutions was 81.90%, 90.49%, and 81.90% respectively. SHAP analysis revealed important facial features, while the inclusion of BMI and personality questionnaire improved model performance. This demonstrates that facial ratio-based Sasang constitution analysis yields effective and accurate classification results. Conclusions Facial ratio-based Sasang constitution analysis provides rapid and objective results compared to traditional methods. This approach holds promise for enhancing personalized medicine in Korean traditional medicine.

The Study on the Stress Concentration Ratio of Low Slump Mortar Grouting Mixtures for Improving the Soft Ground (연약지반 보강을 위한 저유동성 몰탈 개량체의 응력분담비에 관한 연구)

  • Park, Eonsang;Kim, Byungil;Park, Seungdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.15-24
    • /
    • 2020
  • In this study, the stress concentration ratio for the improved material of the low slump mortar grouting was evaluated through the composite ground method, the ground arching theory, the plastic angle method, the 2D and 3D numerical analysis and the 3D model experiment. The stress concentration ratio calculated by the composite ground method was 89.3, 3.75~59.0 when the three-dimensional ground arching theory was applied, and 82.8 for the three-dimensional plastic angle method. As a result of the 2D numerical analysis, the stress concentration ratio was 63.0~77.0, which was found to increase as the improvement ratio increased. The results of 3D numerical analysis were predicted to be 50.0~56.0 smaller than the results of 2D analysis. In the case of a special model experiment using a large triaxial compression cell, the stress concentration ratio for each load step was 53.0~60.0, and the stress concentration ratio evaluated by the experiment was measured within 2D and 3D numerical analysis predictions. In this study, a predictive equation for the stress concentration ratio according to the improvement ratio is proposed based on the analysis and experimental values for the improved ratio of the low slump mortar grouting.

A Simulation Analysis for Selecting In/Out Port Ratio in FAX Network System Operation (팩스 통신망 입출력회선 비율 설정에 관한 시뮬레이션 분석)

  • 나윤균
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.2
    • /
    • pp.101-109
    • /
    • 1999
  • In a commercial facsimile network system, a simulation analysis has been performed using ARENA due to the unavailability of theoretical models. The effect of a priority is compared with that of the current FCFS rule on the arriving call blocking rate and transmission time delay. The result shows that the priority rule reduces more service time delay as the arrival rate increases. A simulation analysis procedure is proposed to select optimal in/out port ratio at various hourly arrival rates with a given multiple-place transmission requests ratio.

  • PDF

A Numerical Analysis on Thermal and Fluid in Solar Concentration Absorber with Tilt Angle and Opening Ratio of Absorber Entrance (태양열 집광 흡수기 입구의 개방비와 경사각도에 따른 열유체 유동에 관한 수치해석)

  • Lee, Snag-Chul;Lee, Yong-Hun;Choi, Seuk-Cheun;Shin, You-Sik;Jeong, Hyo-Min;Jeong, Han-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1485-1490
    • /
    • 2003
  • This paper is the analysis of thermal and fluid in solar concentration absorber with various tilt angle and opening ratio of absorber entrance. The purpose of this study is to develop optimum solar concentration absorber, and the parameters for the study are the opening ratio of absorber entrance and the tilt angle. The aspect ratio of absorber was fixed at 0.64, and opening ratio was changed from 0.1 to 1.0. The finite volume method with SIMPLE computational algorithm are used and analyzed the heat transfer in absorber inside walls.

  • PDF

The Prediction of Void Ratio in Unsaturated Soils (불포화토에서 공극비의 추정)

  • Lee Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.51-57
    • /
    • 2006
  • This study was carried out to investigate the soil water characteristic curve and prediction of void ratio with net stress and matric suction using the linear elastic and volumetric deformation analysis method on unsaturated silty. The unsaturated soil tests were conducted using a modified oedometer cell and specimens were prepared at water content 2 times of liquid limit and required void ratio. The axis translation technique was used to create the desired matric suctions in the samples. It is shown that soil water characteristic curve and volumetric water content were affected significantly by preconsolidation pressure. As a matric suction increases, the reduction ratio of void ratio was shown to considerably small. Also, the predicted and measured void ratio for unsaturated soils using the linear elastic and volumetric deformation analysis showed good agreement as net stress and matric suction increases.

Numerical Analysis of Crack Growth Using a Crack Closure Model (균열닫힘모델을 이용한 수치해석)

  • 최동호;최항용;이준구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.365-372
    • /
    • 2001
  • This study is concerned with the application of an analytical model of cyclic crack growth that includes the effects of crack closure. The crack closure model is based on the Dugdale model and the strip model, considering the plasticity-induced closure which is caused by residual plastic deformation remaining in the wake of an advancing crack. This study is performed to get the relation between crack growth and crack opening stress with the constant stress ratio, and the relation between stress ratio and crack opening stress with the constant maximum stress under constant-amplitude loading. Under constant-amplitude loading, the crack opening stress is conversed the constant value as a crack grows and is proportion to both the stress ratio and the maximum stress. The crack closure effect, however, is decreased in the positive stress ratio and disappeared at about 0.7. The crack growth analysis using the crack closure model shows that the influence of stress ratio is minimized in the relation between crack growth ratio and effective stress intensity range specially at the negative stress ratio.

  • PDF

The influences of equivalent viscous damping ratio determination on direct displacement-based design of un-bonded post-tensioned (UPT) concrete wall systems

  • Anqi, Gu;Shao-Dong, Shen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.627-637
    • /
    • 2022
  • Recent years, direct displacement-based design (DDBD) procedure is proposed for the design of un-bonded posttensioned (UPT) concrete wall systems. In the DDBD procedure, the determination of the equivalent viscous damping (EVD) ratio is critical since it would influence the strength demand of the UPT wall systems. Nevertheless, the influence of EVD ratio determination of the UPT wall systems were not thoroughly evaluated. This study was aimed to investigate the influence of different EVD ratio determinations on the DDBD procedure of UPT wall systems. Case study structures with four, twelve and twenty storeys have been designed with DDBD procedure considering different EVD ratio determinations. Nonlinear time history analysis was performed to validate the design results of those UPT wall systems. And the simulation results showed that the global responses of the case study structures were influenced by the EVD ratio determination.

Measurement Conditions of Concrete Pull-off Test in Field from Finite Element Analysis (유한요소 해석을 이용한 현장 콘크리트 부착강도 측정조건)

  • Kim, Seong-Hwan;Jeong, Won-Kyong;Kwon, Hyuck;Kim, Hyoun-Oh;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.185-192
    • /
    • 2002
  • The performance of old and the new concrete construction depends upon bond strength between old and the new concrete. Current adhesive and strength measurement method ignores the effect of stress concentration from shape of specimens. Therefore, this research calculates stress concentration coefficient as the ratio of drilling depth to drilling diameter($h_s/D$), the ratio of overlay thickness to drilling diameter($h_0/D$), the ratio of steel disk thickness to drilling diameter(t/D), the ratio of overlay elastic modulus to substrate modulus($E_1/E_0$), the distance from core to corner border(L_$_{corner}$) and the distance between cores(L_$_{coic}$) vary. The finite element method is adapted to analysis The results from 'the F.E.M analysis are as follows. The stress concentration effects can be minimized when the ratio of drilling depth to drilling diameter($h_s/D$) is 0.20~0.25, the elastic modulus ratio($E_1/E_0$) is 06~1.0, and the ratio of steel disk thickness to drilling diameter(t/D) is 3.0. The overlay thickness, the distance from specimens to corner border(L_$_{corner}$), the distance between cores(L_$_{coic}$) almost do not affect to the stress concentration.

  • PDF

Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate

  • Ju, Minkwan;Park, Kyoungsoo;Lee, Kihong;Ahn, Ki Yong;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.399-405
    • /
    • 2019
  • The present study assessed the reliability-based reinforcement ratio of FRP reinforced concrete structure applying recycled coarse aggregate (RCA) concrete. The statistical characteristics of FRP bars and RCA concrete were investigated from the previous literatures and the mean value and standard deviation were employed for the reliability analysis. The statistics can be regarded as the material uncertainty for configuring the probability distribution model. The target bridge structure is the railway bridge with double T-beam section. The replacement ratios of RCA were 0%, 30%, 50%, and 100%. From the probability distribution analysis, the reliability-based reinforcement ratios of FRP bars were assessed with four cases according to the replacement ratio of RCA. The reinforcement ratio of FRP bars at RCA 100% showed about 17.3% higher than the RCA 0%, where the compressive strength at RCA 100% decreased up to 27.5% than RCA 0%. It was found that the decreased effect of the compressive strength of RCA concrete could be compensated with increase of the reinforcement ratio of FRP bars. This relationship obtained by the reliability analysis can be utilized as a useful information in structural design for FRP bar reinforced concrete structures applying RCA concrete.