• 제목/요약/키워드: Rates of strain

검색결과 797건 처리시간 0.03초

금속재료 변형률속도 경화의 미시적 관찰 (Microscopic Investigation of the Strain Rate Hardening for Metals)

  • 윤종헌;허훈;허무영;강형구;박찬경;서주형;강주석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.352-355
    • /
    • 2007
  • Polycrystalline materials such as steels(BCC) and aluminum alloys(FCC) show the strain hardening and the strain rate hardening during the plastic deformation. The strain hardening is induced by deformation resistance of dislocation glide on some crystallographic systems and increase of the dislocation density on grain boundaries or inner grain. However, the phenomenon of the strain rate hardening is not demonstrated distinctly. In this paper, tensile tests for various strain rates are performed in the rage of $10^{-2}$ to $10^2s^{-1}$ then, specimens are extracted on the same strain position to investigate the microscopic behavior of deformed materials. The extracted specimen is investigated by using the electron backscattered diffraction(EBSD) and transmission electron microscopy(TEM) results which contain grain size, grain shape, aspect ratio and dislocation substructure.

  • PDF

Interpretation of coefficient of consolidation from CRS test results

  • Jia, Rui;Chai, Jinchun;Hino, Takenori
    • Geomechanics and Engineering
    • /
    • 제5권1호
    • /
    • pp.57-70
    • /
    • 2013
  • Constant rate of strain (CRS) consolidation tests were conducted for undisturbed Ariake clay samples from three boreholes in Saga Plain of Kyushu Island, Japan. The coefficients of consolidation ($c_{\nu}$) were interpreted from the CRS test results by small- and large-strain theory. Large-strain theory was found to interpret smaller $c_{\nu}$ values and less strain rate effect on $c_{\nu}$ than that by small-strain theory. Comparing the theoretical strain distributions within a soil specimen to those obtained by numerical simulation shows that the small-strain theory can be used only for the dimensionless parameter $c_{\nu}/\dot{\varepsilon}H_0^2{\geq}50$ (where $\dot{\varepsilon}$ is strain rate and $H_0$ is the specimen height), and the large-strain theory can be used for a larger range of strain rates. Applying the criterion to undisturbed Ariake clay with a $c_{\nu}$ value of about $1{\times}10^{-7}\;m^2/s$, it is suggested that the large-strain theory should be adopted for calculating the $c_{\nu}$ value when $\dot{\varepsilon}$ > 0.03%/min.

변형률 속도에 따른 형상기억합금 초탄성 거동의 실험 및 해석 연구 (Experimental and Numerical Analysis for Superelastic Behaviors of SMAs with Strain-rate Dependence)

  • 노진호;박정인;이수용
    • 한국항공우주학회지
    • /
    • 제39권1호
    • /
    • pp.9-15
    • /
    • 2011
  • 변형률-속도에 따른 형상기억합금의 초탄성 거동 특성 변화를 실험적 그리고 수치적으로 살펴보았다. 변형률-속도를 고려한 형상기억합금의 수학 모델을 유도하였고, 형상기억합금의 실험결과를 바탕으로 변형률 속도에 따른 형상기억합금의 열-기계적 특성변화를 관찰하였다. 변형률-속도의 변화에 따라 형상기억합금 시편의 급격한 온도변화가 일어남을 확인하였고 이런 현상이 초탄성 거동 특성 변화에 큰 영향을 미침을 예측 할 수 있었다.

고질소강 오스테나이트계 스테인레스강의 압축변형특성 (Deformation Characteristic by Compression in High-Nitrogen Austenitic Stainless Steel)

  • 이종욱;김동수;김병구;이명열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.139-141
    • /
    • 2007
  • Compression tests were carried out to investigate morphologies of compressed specimen, deformation microstructure and stress-strain relation in high-nitrogen austenite stainless steel. Tests were performed under a wide range of temperature and, with true strain rates up to $\dot{\varepsilon}$ =0.05, 0.1, 0.5 and $1.0s^{-1}$. The activation energy of loading force was equal to plastic deformation energy within the temperature range of $900^{\circ}C$ to $1250^{\circ}C$. Dynamically recrystallized grain size decreased with an increasing strain rate and temperature. Flow stresses and deformation microstructures, were used to quantify the critical strain rate and recrystallized grain size. The grain size versus strain rate-temperature map obtained in the study was in good agreement with the deformation microstructures of compressed specimens.

  • PDF

Spark Plasma Sintering법에 의해 예비 성형된 Al-10Si-5Fe-1Zr 분말합금의 고온 압축변형 거동 (Compressive Deformation Behavior of Al-10Si-5Fe-1Zr Powder Alloys Consolidated by Spark Plasma Sintering Process)

  • 박상춘;김목순;김경택;신승용;이정근;류관호
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.853-859
    • /
    • 2011
  • Compressive deformation behavior of Al-10Si-5Fe-1Zr (wt%) alloy preform fabricated by SPS(spark plasma sintering) of gas atomized powder was investigated in the temperature range from 380 to $480^{\circ}C$ and at strain rates from $1.0{\times}10^{-3}$ to $1.0{\times}10^{0}s^{-1}$. Stress-strain curves showed a peak stress (${\sigma}_p$) during initial stage of deformation, followed by a steady state flow at all temperatures and strain rates tested. The (${\sigma}_p$) decreased with both increase in temperature and decrease in strain rate. Nearly full densification was found to occur in the compressively deformed specimens irrespective of test condition. TEM observation revealed a restricted grain growth during steady state flow.

고온에서 $Zr_{55}Al_{10}Ni_5Cu_{30}$ 벌크 유리금속의 변형거동 (Deformation Behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ Bulk Metallic Glass at High Temperatures)

  • 정영진;김기현;오상엽;신형섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.342-347
    • /
    • 2004
  • The deformation behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass under tensile loading at different range of strain rates and temperatures between 680 K and 740 K were investigated. The variation in the deformation behavior of $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass which resulted from the crystallization induced during testing was reported. The$Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass has showed either homogeneous or inhomogeneous deformation depending on test condition. It exhibited a maximum elongation of about 560 % at the condition of $407^{\circ}C{\times}\;10^{-4}/s$. The flow behavior exhibited three different types and the flow stress became lower at higher temperatures and lower strain rates. The increase of the time elapsed during heating resulted in the partial crystallization of bulk metallic glass phase and eventually strain hardening and brittle fracture.

  • PDF

1.9wt%C 초고탄소 워크롤 단조 공정 : Part I - 기공생성 및 미세조직 분석 (Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part I - Analysis on Void Formation and Microstructure)

  • 임형철;이호원;김병민;강성훈
    • 소성∙가공
    • /
    • 제22권8호
    • /
    • pp.456-462
    • /
    • 2013
  • Compression tests were conducted at the various temperatures and strain rates to investigate void formation and microstructures behavior of a 1.9wt%C ultrahigh carbon steel used in forged workrolls. The microstructure, grain size and volume fraction of cementite were determined using specimens deformed in the temperature range from 800 to $1150^{\circ}C$ and strain rates from 0.01 to 10/s. It was found from the microstructural analysis that the grain size is larger at higher temperatures and lower strain rate deformation conditions. In addition, a higher volume fraction of cementite was measured at lower temperatures. The brittle blocky cementite was fractured at $800^{\circ}C$ and $900^{\circ}C$ regardless of strain rate. As a result, numerous new micro voids were formed in the fragmented blocky cementite. It was also found that local melting can occur at temperatures of more than $1130^{\circ}C$. Therefore, the forging temperature should be controlled between $900^{\circ}C$ and $1120^{\circ}C$. The temperature rise, which depends on the anvil stroke and velocity, was estimated through cogging simulation to find the appropriate forging temperature and to prevent local melting due to plastic work.

Numerical Ductile Tearing Simulation of Circumferential Cracked Pipe Tests under Dynamic Loading Conditions

  • Nam, Hyun-Suk;Kim, Ji-Soo;Ryu, Ho-Wan;Kim, Yun-Jae;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1252-1263
    • /
    • 2016
  • This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

Increased Production of Recombinant Protein by Escherichia coli Deficient in Acetic Acid Formation

  • Koo, Tae-Young;Park, Tai-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권6호
    • /
    • pp.789-793
    • /
    • 1999
  • The effect of acetic acid formation deficiency on recombinant E. coli fermentation was investigated using a mutant strain deficient in acetic acid formation. A mutant strain which does not grow under anaerobic conditions was isolated. The acetic acid production in this strain was negligible in aerobic batch fermentation. The cloned-gene expression in the mutant strain was higher than the wild-type strain. Fed-batch fermentations with controlled specific growth rates were carried out in order to compare the cloned-gene expression between the wild-type and the mutant strains. The expression decreased along with the specific growth rate in both strains. The cloned-gene expression in the mutant strain was 60% higher than in the wild-type strain at the same specific growth rate.

  • PDF

Ti-Al금속간화합물의고온변형거동및라멜라조직의결정방위분포 (High Temperature Deformation Behavior of Ti-Al Intermetallic Compound and Orientation Distribution of Lamellae Structure)

  • 박규섭;강창용;이근진;정한식;정영관;복부양지
    • 한국정밀공학회지
    • /
    • 제21권10호
    • /
    • pp.162-169
    • /
    • 2004
  • High temperature uniaxial compression tests in the alpha single phase region were carried out on the Ti -43mo1%Al intermetallic compound, in order to obtain oriented lamellar microstructure. The compression deformation temperatures and strain rates are from 1573k to 1623k and 1.0x10$^{-4}$ s to 5.0x10$^{-3}$ s, respectively. Fully lamellar microstructure was observed after the uniaxial compression deformation in a single phase region followed by cooling to room temperature. Lamellar colony diameter depended on strain rates and test temperatures. The diameter varied between 8601m and 300fm. Stress-strain curve showed a work softening and the size of lamellar colony diameter varied depending on peak stresses. This shows the occurrence of dynamic recrystallization. Texture measurements after the uniaxial compression deformation, showed the development of fiber during dynamic recrystallization. It is seen that the area for the maximum pole density existed in 35 degrees away from the compression plane. The texture sharpens with a decrease in strain rate