• Title/Summary/Keyword: Rated wind speed

Search Result 97, Processing Time 0.031 seconds

Aeroelastic investigation of a composite wind turbine blade

  • Rafiee, Roham;Fakoor, Mahdi
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.671-680
    • /
    • 2013
  • Static aeroelastic is investigated in a wind turbine blade. Imposed to different loadings, the very long and flexible structures of blades experience some changes in its preliminary geometry. This results in variations of aerodynamic loadings. An iterative approach is developed to study the interactions between structure and aerodynamics evaluating variations in induced stresses in presence of aeroelasticity phenomenon for a specific wind turbine blade. A 3D finite element model of the blade is constructed. Aerodynamic loading is applied to the model and deflected shape is extracted. Then, aerodynamic loadings are updated in accordance with the new geometry of the deflected blade. This process is repeated till the convergence is met. Different operational conditions consisting of stand-by, start-up, power production and normal shut-down events are investigated. It is revealed that stress components vary significantly in the event of power production at the rated wind speed; while it is less pronounced for the events of normal shut-down and stand-by.

A bimodal Weibull distribution - capacity factor for different heights at sulur

  • Seshaiah, C.V.;Indhumathy, D.
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Due to developing environmental concern use of renewable energy source is very essential. The great demand for the energy supply coupled with inadequate energy sources creates an emergency to find a new solution for the energy shortage. The appropriate wind energy distribution is the fundamental requirement for the assessment of wind energy potential available at the particular site essential for the design of wind farms. Hence the proper specification of the wind speed distribution plays a vital role. In this paper the Bimodal Weibull distribution is used to estimate the Capacity factor at the proposed site. The shape and scale parameters estimated using Maximum likelihood method is used as the initial value for extrapolation. Application of this model will give an accurate result overwhelming the concept of overestimation or underestimation of Capacity factor.

Wake Losses and Repositioning of Wind Turbines at Wind Farm (풍력발전단지의 후류손실 및 터빈 재배치에 관한 연구)

  • Park, Kun-Sung;Ryu, Ki-Wahn;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.17-25
    • /
    • 2015
  • The main objective of this study is to predict the wind power generation at the wind farm using various wake models. Modeling of wind farm is a prerequisite for prediction of annual energy production at the wind farm. In this study, we modeled 20 MW class Seongsan wind farm which has 10 wind turbines located at the eastern part of Jeju Island. WindSim based on the computational fluid dynamics was adopted for the estimation of power generation. The power curve and thrust coefficient with meteorology file were prepared for wind farm modelling. The meteorology file was produced based on the measured data of the Korea Wind Atlas provided by Korea Institute of Energy Research. Three types of wake models such as Jensen, Larsen, and Ishihara et al. wake models were applied to investigate the wake effects. From the result, Jensen and Ishihara wake models show nearly the same value of power generation whereas the Larsen wake model shows the largest value. New positions of wind turbines are proposed to reduce the wake loss, and to increase the annual energy production of the wind farm.

Power Smoothening Control of Wind Farms Based on Inertial Effect of Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Kang, Jong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1096-1103
    • /
    • 2014
  • This paper proposes a novel strategy for attenuating the output power fluctuation of the wind farm (WF) in a range of tens of seconds delivered to the grid, where the kinetic energy caused by the large inertia of the wind turbine systems is utilized. A control scheme of the two-level structure is applied to control the wind farm, which consists of a supervisory control of the wind farm and individual wind turbine controls. The supervisory control generates the output power reference of the wind farm, which is filtered out from the available power extracted from the wind by a low-pass filter (LPF). A lead-lag compensator is used for compensating for the phase delay of the output power reference compared with the available power. By this control strategy, when the reference power is lower than the maximum available power, some of individual wind turbines are operated in the storing mode of the kinetic energy by increasing the turbine speeds. Then, these individual wind turbines release the kinetic power by reducing the turbine speed, when the power command is higher than the available power. In addition, the pitch angle control systems of the wind turbines are also employed to limit the turbine speed not higher than the limitation value during the storing mode of kinetic energy. For coordinating the de-rated operation of the WT and the storing or releasing modes of the kinetic energy, the output power fluctuations are reduced by about 20%. The PSCAD/EMTDC simulations have been carried out for a 10-MW wind farm equipped with the permanent-magnet synchronous generator (PMSG) to verify the validity of the proposed method.

A Study of Stand Alone Small Wind Turbine Systems (독립형 소형 풍력발전 시스템에 관한 연구)

  • Kim, Hyoung-Gii;Kong, Jeong-Sik;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1005-1007
    • /
    • 2005
  • Small wind turbines are becoming a viable technology option to supply electricity to landowners. These systems provide energy security, product relatively no environmental harm, and in an appropriate setting can be quite cost-competitive with traditional electricity options. This paper is dealing with the methods how to overcome such inconvenience and with the analysis of characteristic and a field test with a prototype of the stand alone wind turbine was performed. The method applies to small systems, equipped with a coreless axial-flux permanent magnet(AFPM) generator in the turbine, a dc-dc converter and batteries. The analysis concentrates on the effect of the load on the power-wind speed curve of the turbine. The system is designed for direct driven, coupled with turbine and generator with a rated power of, 3kW.

  • PDF

Design and Analysis of Direct-Coupled, Small-Scaled Permanent Magnet Generator for Wind Power Application (풍력발전을 위한 소용량 영구자석형 동기발전기의 설계 및 해석)

  • Kim, Il-Jung;Choi, Jang-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.39-51
    • /
    • 2014
  • This paper deals with design of a direct-coupled, small-scaled permanent magnet generator (PMG) for wind power application. First, this paper determines rated power and speed of the PMG from measured characteristics of wind turbines. Second, we derive analytical solutions for the open-circuit field in order to determine optimum magnet thickness and pole pitch/arc ratio. Third, on the basis of open circuit field solutions, stator magnetic circuit including slot opening, teeth width and yoke thickness is designed. And then, a diameter of stator coil which agree with a required current density is calculated, and its turns are determined from the area of slot considering winding packing factor. Finally, finite element (FE) method is employed in analyzing the details of the designed PMG and, test results such as back-emf measurements are given to confirm the design.

Power Conversion and Design of Permanent Magnet Generator for Wind Power Applications (영구자석형 풍력용 발전기의 설계 및 전력 변환)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook;Yoon, Ki-Kab;Kim, Byeong-Han;Kyung, Nam-Ho;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1756-1758
    • /
    • 2005
  • This paper deals with the power conversion and design of permanent magnet generator for wind power applications. This paper derives analytical solutions for open-circuit field, armature reaction field, torque, back-emf, inductance and resistance of permanent magnet generators for wind power applications. And then, by presenting the variation of torque according to design parameters and by applying restrict conditions to it, we determine proper design parameter appropriate to rated power and speed. Finally, this paper also presents power conversion system resonable in wind power applications.

  • PDF

Study on Properties of Pitch Control for Wind Turbine (풍력터빈의 피치 PI 제어기 특성 고찰)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.59-65
    • /
    • 2011
  • The aerodynamic power and torque of wind turbines are extremely nonlinear. Therefore, the overall dynamic behavior of a wind turbine exhibits nonlinear characteristics that are dependent on the magnitude of the wind speed. The nonlinear aerodynamic characteristics of the wind turbine also affect the characteristics of the control system of the wind turbine. Therefore, the analysis of the nonlinear aerodynamic characteristics of wind turbine is essential in designing the wind-turbine controller. In this study, the nonlinear aerodynamic characteristics and the effects of these characteristics on the closed-loop pitch system with PI controller for an 1-mass model of the wind turbine are investigated above rated power.

An Experimental Study on Wake Flow-Field of NREL 5 MW Wind Turbine Model (NREL 5 MW 풍력터빈 모형의 후류 유동장에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.85-91
    • /
    • 2017
  • A wind tunnel test for 1/86 scaled down model of the NREL 5 MW offshore wind turbine was conducted to investigate the wake and flow fields. Deficit of flow speed in the wake region and variations of the turbulence intensity were measured using a hot wire anemometer at rated tip speed ratio of 11.4 m/s and a rotational speed of 1,045 rpm. According to the test results, velocity deficits along both of lateral and vertical directions were recovered within 2 rotor radii downstream from the rotating disc plane. The tip vortices effect was negligible after 5 rotor radii downstream from the rotating plane. Turbulence intensities showed maximum value around the blade tip, and decreased rapidly after one radius apart from the rotating plane, and those values were preserved until 6 rotor radii downstream.

Validation of Power Coefficient and Wake Analysis of Scaled Wind Turbine using Commercial CFD Program (상용 CFD 프로그램을 이용한 풍력터빈 축소모델 출력계수 검증 및 후류 해석)

  • Kim, Byoungsu;Paek, Insu;Yoo, Neungsoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A numerical simulation on the wake flow of a wind turbine which is a scaled version of a multi-megawatt wind turbine has been performed. Two different inlet conditions of averaged wind speed including one below and one above the rated wind speed were used in the simulation. Steady-state pitch angles of the blade associated with the two averaged wind speeds were imposed for the simulation. The steady state analysis based on the Reynolds averaged Navier-Stokes equations with the method of frame motion were used for the simulation to find the torque of the rotor and the wake field behind the wind turbine. The simulation results were compared with the results obtained from the wind tunnel testing. From comparisons, it was found that the simulation results on the turbine power are pretty close to the experimental values. Also, the wake results were relatively close to the experimental results but there existed some discrepancy in the shape of velocity deficit. The reason for the discrepancy is considered due to the steady state solution with the frame motion method used in the simulation. However, the method is considered useful for solutions with much reduced calculation time and reasonably good accuracy compared to the transient analysis.