• 제목/요약/키워드: Rated wind speed

검색결과 97건 처리시간 0.023초

속도 오버슈트 발생 시 제한 속도를 초과하지 않는 실속형 블레이드 풍력터빈의 속도제어기 설계 (Design of Speed Controller for Stall Blade Wind Turbine Complying with the Speed Limit During Speed Overshoot)

  • 김예찬;송승호
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.438-445
    • /
    • 2022
  • Blade efficiency decreases when the rotor speed is kept constant even though the wind speed is higher than the rated value. Therefore, a speed controller is used to regulate the rotor speed in the high-wind-speed region. In stall-blade wind turbine, the role of the speed controller is important because precise aerodynamic regulation is unavailable. In this study, an effective parameter design method of a PI speed controller is proposed to limit the speed overshoot of a type 4 wind turbine with stall blades even though wind gust occurs. The proposed method considers the efficiency characteristics of the stall blade and the mechanical inertia of the wind turbine rotor. It determines the bandwidth of the speed controller to comply with the speed limit during generator speed overshoot for the worst case of wind gust. The proposed method is verified through intensive simulations with a MATLAB/SIMULINK model and experimental results obtained using a 3 kW MG set of wind turbine simulator.

과풍속 출력 제한형 소형 풍력 발전장치 개발 (Development of the Furling Control Type Small Wind Turbine System)

  • 최영철;김철호;이현채;서영택;한용운;송정일
    • 한국정밀공학회지
    • /
    • 제29권6호
    • /
    • pp.693-701
    • /
    • 2012
  • In this study, a small wind turbine airfoil specialized for national wind condition was designed in order to develop the furling control type HAWT. And then a flow analysis was carried out based on the blade drawing which was designed to characterize of the developed airfoil. The result of the flow analysis showed that the torque on the 3 blades was 180.23N.m. This is equivalent to an output power of 5.66kw and an output efficiency of 0.44. Then we produced and constructed a 3kW - furling control type HAWT by getting the system unit design technology such as the specialized furling control device. By operating this turbine, we could get 3kW of the rated power at a wind speed of 10.5m/s through the ability test. Cut-in wind speed was 2m/s, generator efficiency was 92% at the rated power output. Sound power level was 87.2dB(A). Also we observed that the output power was limited to 10.5m/s with furling system operation.

풍력터빈의 출력과 회전속도를 이용한 풍속예측 출력제어 (Wind Estimation Power Control using Wind Turbine Power and Rotor speed)

  • 고승윤;김호찬;허종철;강민제
    • 한국산학기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.92-99
    • /
    • 2016
  • 풍력터빈은 정격풍속미만에서 최대출력을 내기위한 제어를 한다. 최대출력을 얻기 위한 방법 중에는 최적 TSR(Tip Speed Ratio)제어와 P&O(Perturbation and Observation) 제어가 대표적이라 할 수 있다. P&O 제어는 출력과 회전속도만을 이용하여 간단한 알고리즘으로 제어되지만 반응속도가 느린 것이 단점이라 할 수 있다. 최적 TSR 제어는 반응속도가 빠르지만 정확한 풍속을 알아야만 된다. 정확한 풍속을 구하기 위하여 측정을 하거나 예측하는 방법을 사용한다. 풍속을 측정하기 위하여 풍속계를 풍력터빈에 가까이 설치하게 되는 데, 이 때 블레이드의 간섭으로 정확한 풍속 측정이 쉽지 않다. 그래서 풍속을 예측하는 방법들이 사용하게 되었다. 풍속을 예측하기 위하여 신경망을 비롯한 다양한 수치해석 방법들이 사용되고 있으나 풍속예측 문제는 역문제와 관련이 있어 그리 간단치가 않다. 본 논문에서는 기존의 방법들과 다르게 역문제로 풀지 않고 바람의 출력그래프에서 터빈의 출력과 회전속도만을 이용하여 풍속을 예측할 수 있는 새로운 방법을 제안하였다. Matlab/Simulink을 사용하여 제안된 방법으로 풍속이 제대로 예측되며 최대 출력제어가 되는 것을 확인하였다.

배터리 충전을 위한 소형풍력 발전 시스템의 한계 풍속에 관한 연구 (A Study on the Cuf-off Speed of Small-scale Wind Power System for Battery Charging)

  • 구현근;이형욱;김장목
    • 전기학회논문지
    • /
    • 제63권4호
    • /
    • pp.484-489
    • /
    • 2014
  • Three phase PWM(Pulse Width Modulation) converter of the small-scale wind power system is able to charge battery under the rated wind speed regions. However, it is impossible to control output power of converter at the over win speed region because back-EMF(Electro Motive Force) of PMSG(Permanent Magnet Synchronous Generator) is higher than the battery terminal voltage of PMSG is reduced. However, the cut-off wind speed exists although battery charging algorithm is implemented by flux weakening control method. Therefore, this paper performs analysis of other factors which affects limitation wind speed. The validity of the analysis are verified through simulation.

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

동작점 변화 조건에서의 풍력터빈 선형 피치제어기 설계 (Design of Linear Pitch Controller in Wind Turbine under the condition of Varying Operating Points)

  • 천종민;김춘경;이주훈;홍지태;권순만
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • This paper presents a pitch controller which can hold output power constant at the rated value. Although wind turbine contains complicated nonlinearities, its behaviour within a certain operating range of a point can be approximated by that of a linear model. By doing so, we can apply rather simple and systematic linear control techniques such as PID and LQR(Linear Quadratic Regulator) to design a linear pitch controller. Because these linear controllers are valid only in a sufficiently small range around an operating point, linearized wind turbine model under the condition of varying wind speed needs a linear pitch controller can achieve the aims of tracking the rated rotor rotational speed. We propose an improved linear pitch controller taking each merit of LQR and PI controller under the condition of varying operating points in this paper.

  • PDF

1MW급 수평축 풍력터빈 로터 블레이드 설계 및 CFD에 의한 공력성능 평가 (Rotor Blade Design of a 1MW Class HAWT and Evaluation of Aerodynamic Performance Using CFD Method)

  • 모장오;이영호
    • 한국유체기계학회 논문집
    • /
    • 제15권1호
    • /
    • pp.21-26
    • /
    • 2012
  • In this investigation, the aerodynamic performance evaluation of a 1MW class blade has been performed with the purpose of the verification of target output and its clear understanding of flow field using CFD commercial code, ANSYS FLUENT. Before making progress of CFD analysis the HERACLES V2.0 software based on blade element momentum theory was applied for confirmation of quick and approximate performance in the preliminary stage. The blade was designed to produce the target output of a 1MW class at a rated wind speed of 12m/s, which consists of five different airfoils such as FFA W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power by CFD is approximately 1.195MW, which is converted into the electrical power of 1.075MW if the system loss is considered to be 0.877.

Power Regulation of Variable Speed Wind Turbines using Pitch Control based on Disturbance Observer

  • Joo, Young-Jun;Back, Ju-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.273-280
    • /
    • 2012
  • Most variable speed wind turbines have pitch control mechanisms and one of their objectives is to protect turbines when the wind speed is too high. By adjusting pitch angles of wind turbine, the inlet power and the torque developed by the turbine are regulated. In this paper, the difference between the real wind speed and its rated value is regarded as a disturbance, and a component called disturbance observer (DOB) is added to the pre-designed control loop. The additional DOB based controller estimates the disturbance and generates a compensating signal to suppress the effect of disturbance on the system. As a result, the stability and the performance of the closed loop system guaranteed by an outer-loop controller (designed for a nominal system without taking into account of disturbances) are approximately recovered in the steady state. Simulation results are presented to verify the performance of the proposed control scheme.

Feedforward Pitch Control Using Wind Speed Estimation

  • Nam, Yoon-Su;Kim, Jeong-Gi;Paek, In-Su;Moon, Young-Hwan;Kim, Seog-Joo;Kim, Dong-Joon
    • Journal of Power Electronics
    • /
    • 제11권2호
    • /
    • pp.211-217
    • /
    • 2011
  • The dynamic response of a multi-MW wind turbine to a sudden change in wind speed is usually slow, because of the slow pitch control system. This could cause a large excursion of the rotor speed and an output power over the rated. A feedforward pitch control can be applied to minimize the fluctuations of these parameters. This paper introduces the complete design steps for a feedforward pitch controller, which consist of three stages, i.e. the aerodynamic torque estimation, the 3-dimensional lookup table for the wind seed estimation, and the calculation of the feedforward pitch amount. The effectiveness of the feedforward control is verified through numerical simulations of a multi-MW wind turbine.

Aero-elastic coupled numerical analysis of small wind turbine-generator modelling

  • Bukala, Jakub;Damaziak, Krzysztof;Karimi, Hamid Reza;Malachowski, Jerzy
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.577-594
    • /
    • 2016
  • In this paper a practical modelling methodology is presented for a series of aero- servo- elastic- coupled numerical analyses of small wind turbine operation, with particular emphasis on variable speed generator modelling in various wind speed conditions. The following characteristics are determined using the available computer tools: the tip speed ratio as a function of the generator constant (under the assumption of constant wind speed), the turbine coefficient of power as a function of the tip speed ratio (the torque curve is modified accordingly and generator speed and power curves are plotted), turbine power curves and coefficient of power curve as functions of the incoming wind speed. The last stage is to determine forces and torques acting on rotor blades and turbine tower for specific incoming wind speeds in order to examine the impact of the stall phenomena on these values (beyond the rated power of the turbine). It is shown that the obtained results demonstrate a valuable guideline for small wind turbines design process.