• Title/Summary/Keyword: Rated speed

Search Result 380, Processing Time 0.038 seconds

Comparison Analysis of Induction Motor using the Equivalent Circuit (등가회로도를 이용한 유도전동기의 특성 비교 분석)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.7-11
    • /
    • 2014
  • Induction motor is the most widely used to obtain the driving force in the industrial site. Induction motor is generally applied to the constant speed operation. Induction motor generates a high current at startup. So analysis for both steady state operation and start-up transient is required. In most cases, an equivalent circuit is used for the characteristics analysis of the induction motor. In this study, the two programs are applied to analyze for the rated speed as well as entire speed range. We confirmed that calculation results of the two programs are similar to each other.

Sliding Mode Controller for Torque and Pitch Control of PMSG Wind Power Systems

  • Lee, Sung-Hun;Joo, Young-Jun;Back, Ju-Hoon;Seo, Jin-Heon;Choy, Ick
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • We propose a torque and pitch control scheme for variable speed wind turbines with permanent magnet synchronous generator (PMSG). A torque controller is designed to maximize the power below the rated wind speed and a pitch controller is designed to regulate the output power above the rated wind speed. The controllers exploit the sliding mode control scheme considering the variation of wind speed. Since the aerodynamic torque and rotor acceleration are difficult to measure in practice, a finite time convergent observer is designed which estimates them. In order to verify the proposed control strategy, we present stability analysis as well as simulation results.

A Study on the Development of High-Speed Control Algorithm for the trapezoidal Brushless DC Motor (구형파 브러시리스 직류 전동기의 고속 운전 제어 알고리즘 개발에 관한 연구)

  • Choi Jae-Hyuk;Jang Hoon;Kim Jong-Sun;Yoo Ji-Yoon;Song Myung-Hyun;Lee Young-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.435-438
    • /
    • 2002
  • The Objects of this paper are developing and also improving a high-speed driving system of bushless DC motor(BLDCM) with economical and practical performance. Because BLDC motors are manufactured that each motor can create proper torque for their individual purpose, it is difficult to increase over the rated speed when a motor speed (with it's rated road) is reaching to a maximum speed so the motor torque cannot be increased. This paper verifies the effects of Leading Angle Algorithm, that is proposed on this paper, with examining existing methods to maximize the torque of a motor in high-speed driving area. The arithmetic processor for this experiment is TMS320C240 DSP controller that is designed for a special purpose of motor control in Texis Instrument Inc., and the used Inverter is PM10CSJ060, a Intelligent Power Module of Mitsubishi Corporation.

  • PDF

Efficiency Analysis of Switched Reluctance Generator According to Current Shape under Rated Speed

  • Yu, Siyang;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.491-497
    • /
    • 2013
  • This paper introduces the high efficiency operation of switched reluctance generator (SRG). The proposed SRG operates under the rated speed. The high efficiency can be obtained by the optimal current shape which can make the total losses minimum. For this purpose, theoretical analysis of the copper and core loss is done. In addition, a modified angle position control (MAPC) method which can get the optimal current shape over wide speed condition is presented. In order to verity the theory, the experimental platform is set up. The feasibility of the theory is verified by the simulation and experimental results. The proposed method is simple, reliable and easy to achieve.

An Effect of Pitch Gain-Scheduling on Shaft Vibration Response of Wind Turbine (풍력터빈 축 진동 응답에 대한 피치 게인-스케쥴링의 효과)

  • Lim, Chae-Wook;Jo, Jun-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.36-40
    • /
    • 2012
  • Pitch control of wind turbine is activated above rated wind speed for the purpose of rated power regulation. When we design pitch controller, its gain-scheduling is essential due to nonlinear characteristics of aerodynamic torque. In this study, 2-mass model including a vibration mode of drive-train for a 2 MW wind turbine is considered and pitch control with gain-scheduling using a linearization analysis of the nonlinear aerodynamic torque is applied. Some simulation results for the pitch gain-scheduling under step wind speed are presented and investigated. It is shown that gain-scheduling in pitch control is important especially in the region of high wind speeds when there exists a vibration mode of drive-train.

Comparison and Analysis for Rotor losses of Permanent Magnet Synchronous Generator using Phase Current Harmonic Analysis according to DC and AC Loads (상전류 고조파 분석을 이용한 직교류 부하에 따른 영구자석 동기 발전기의 회전자 손실 특성해석 및 비교)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Choi, Jang-Young;Ko, Kyoung-Jin;Lee, Sung-Ho;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.721-722
    • /
    • 2008
  • This paper deals with comparison and analysis for rotor losses of permanent magnet synchronous generator using phase current harmonic analysis according to dc and ac load. On the basis of analytical field analysis, the rotor losses are analysed. Particularly, rated speed and ac load and the rated speed and dc load conditions are considered. This paper compared rotor losses considered dc load with rotor losses considered ac load. Although our analytical modes is low speed, the rotor losses must be considered by results.

  • PDF

A Study on Turbine Control Algorithms for Large Steam Turbine in a Power Plant (대용량 발전소 재열재생 증기터빈 제어알고리즘에 관한 고찰)

  • Choi, In-Kyu;Jeong, Chang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1665-1666
    • /
    • 2008
  • There are three main devices such as boiler producing steam, turbine driving generator and generator producing electricity. An electrical generator in power plant is driven and maintained its speed at rated by steam turbine which is coupled into generator directly. Therefore after the steam turbine reaches its rated speed and the generator gets into parallel operation with power grid, the electrical power can be increased by turbine controller or governor. The first governor was invented by James Watts for the steam engine to be maintained at a constant speed. The first governor by him was mechanical type with fly balls. The electrical type governor was created due to the progress of electronic devices such as operational amplifiers or integrated circuits. and Today digital electronic type of governor is being widely used in most prime movers.

  • PDF

CONCEPTUAL DESIGN OF INNER-SPHERICAL CONTINUOUSLY VARIABLE TRANSMISSION FOR BICYCLE USAGE

  • SEONG S. H.;RYU J. H.;LEE H. W.;PARK N. G.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.467-473
    • /
    • 2005
  • A continuously variable transmission (CVT) with an inner spherical traction drive was conceptually designed for bicycle usage. The range of the overall speed ratio is from 1.0 to 4.5. The rated power and pedal speed are 100 Watts and 6 rad/s, respectively. The peculiar packageability, high-level power efficiency and high torque capacity were considered in the design process. A compact CVT that can be installed within a $244\times125\times160mm^3$ space and is above 0.9 in efficiency for the rated values was numerically designed. The distribution of efficiency according to the input torque and input speed were calculated. Gradeability in the prescribed operation mode was simulated.

Test results of an inverter system for 750kW gearless wind turbine (750kW gearless 풍력발전기 인버터 시험)

  • Son, Yoon-Gyu;Suh, Jae-Hak;Kwon, Sei-Jin;Jang-Seung-Duck;Oh, Jong-Seok;Hwang-Jin-Su;Kang, Sin-Il;Park, Ga-Woo;Kwon, O-Jung;Chung-Chin-Hwa;Han-Kyung-Seop;Chun-Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.59-63
    • /
    • 2005
  • The 800-kW PM (permanent magnet) synchronous generator is developed as a wind power generator. The matching converter is designed to control the torque and power depending on the wind speed regime. The generator starts to generate the power at the speed of 9 rpm and the rated output is generated at the speed of 25 rpm. The rated output power of an inverter is 750 kW when the PM synchronous generator is delivering 800 kW to the inverter. The inverter is specially designed to perform the maximum power point tracking (MPPT) at the low wind speed regime that is typical wind environment in Korea. The inverter test was done with a 2 MW M-G system at KERI (Korea Electric Research Institute). The M-G set has a 2 MW motor driver and a 38:1 gear to match the speed between the motor and the PM generator. The torque simulating the wind is applied to the PM generator by a DC motor. The test results show the inverter efficiency of $94.3\%$ at the rated power generating condition. The measured values show that the MPPT algorithm is working well. Overall reliability will be verified through the long-term site test.

  • PDF