• Title/Summary/Keyword: Rated Output

Search Result 273, Processing Time 0.034 seconds

Design for Weight Reduction of the Linear induction Motor for MAGLEV (도시형 자기부상열차용 선형유도전동기의 경량화 설계)

  • Park, Seung-Chan;Lee, Won-Min;Kim, Kyung-Min;Kim, Jung-Cheol;Park, Yeong-Ho;Kim, Kuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1460-1465
    • /
    • 2007
  • In this paper, the conventional linear induction motor(LIM) used in propelling the MAGLEV in Korea is redesigned in order to reduce its weight. The specifications of the newly designed model for base speed, acceleration, rated thrust and maximum output is respectively 45km/h, 4.0km/h/sec, 5,200[N] and 65 [kW]. Weight reduction effect of the LIM according to the change of pole number from 8 to 6 is shown. Equivalent circuit analysis considering end effect and finite element method are used for the analysis of the redesigned model. Finally the weight reduction ratio of the newly designed LIM to the conventional model, thrust, attraction force, line current, temperature rise, flux density distribution are presented.

  • PDF

Design of a Three-Axis Force Sensor for Finger Force Measuring System (손가락 힘측정장치의 3축 힘센서 설계)

  • Lee, Kyeong-Jun;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.110-115
    • /
    • 2016
  • This paper describes the design and fabrication of a three-axis force sensor with three parallel plate structures(PPSs) for measuring force in a finger force measuring system for a spherical object catch. The three-axis force sensor is composed of a Fx force sensor, Fy force sensor and a Fz force sensor, and the elements of Fx force sensor and Fy force sensor are a parallel plate structure(PPS) respectively and Fz force sensor is two PPS. The three-axis force sensor was designed using FEM(Finite Element Method), and manufactured using strain-gages. The characteristics test of the three-axis force sensor was carried out. As a test results, the interference error of the three-axis force sensor was less than 1.32%, the repeatability error of each sensor was less than 0.04%, and the non-linearity was less than 0.04%.

A Robust Pitch Control of Wind Turbine Systems (풍력 터빈 시스템의 강인 피치 제어)

  • Han, Myung-Chul;Sung, Chang-Min;Hwang, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1287-1293
    • /
    • 2013
  • In this paper, we consider variable speed wind turbine systems containing uncertain elements. Though PI controller is generally used for pitch control, it cannot guarantee a stability and performance of the complicated wind turbine systems. A robust pitch control scheme is proposed to regulate the electric power output above the rated wind speed. The pitch controller is designed in order to guarantee uniform boundedness and uniform ultimate boundedness based on the bound values of the set where the uncertainties are laid or moves. In order to verify the proposed control scheme, we present stability analysis and simulation results using Matlab/Simulink.

Design of a Four-axis Force/Moment Sensor for Measuring the Applied Force to Wrist (손목에 가해지는 힘측정을 위한 4축 힘/모멘트센서 설계)

  • Hong, Tae-Kyung;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1011-1016
    • /
    • 2013
  • Patients have the paralysis of their wrists, and can't use of their wrists freely. But their wrists can be recovered by wrist-bending rehabilitation exercise. Professional rehabilitation therapeutists exercise the wrists of patients in hospital. But the wrists of patients have not exercised enough for the rehabilitation, because the therapeutists are much less than patients in number. Therefore, the wrist rehabilitation robot should be developed, and it have to measure the applied force to the patients' wrists for their safety. In this paper, the four-axis force/moment sensor was designed for the wrist rehabilitation robot. As a test results, the interference error of the four-axis force/moment sensor was less than 0.91%. It is thought that the sensor can be used to measure the applied force to the patients' wrists.

A Study on Overspeed Control and Valve Position Control for Steam Turbine in Power Plants (증기터빈 밸브제어방식에 따른 과속도 제어 고찰)

  • Choi, In-Kyu;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1661-1662
    • /
    • 2008
  • After steam turbines in power plant drives generator and maintains it at rated speed using high temperature and high pressure steam energy, they regulate the output of generator when synchronized in parallel with the power system. By the way, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is "how to limit the speed within its overspeed trip setpoint and escape from danger." In order to implement this purpose, there are various ways different from valve position control. So, in this paper, the various methods for overspeed protection are introduced in comparison with valve position control.

  • PDF

A Study on the Characteristics of PMASynRM for Zero Inductance of Q-axis (Q축 제로 인덕턴스를 위한 영구자석 매입형 동기 릴럭턴스 전동기 특성 연구)

  • Seo, Jun;Kim, Young-Hyun;Kim, Hong-Seok;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.894-895
    • /
    • 2015
  • This paper deals with the characteristic analysis & optimum design of Permanent Magnet Assisted Synchronous Reluctance Motor(PMASynRM) for Premium Efficiency Performance. The focus of this paper is characteristic analysis of d and q-axis inductances and torque according to magnetizing quantity of interior permanent magnet for PMASynRM. The d and q-axis current component ratios, load angles of a PMASynRM are investigated quantitatively on the basis of the proposed analysis method and the experimental test. Comparisons are given with output characteristic curves of PMASynRM and those according to the rated wattage in PMASynRM, respectively. And optimum design of PMASynRM is performed by Response Surface Methodology(RSM).

  • PDF

Novel Active Clamp Current-fed Half Bridge Converter for Fuel Cell Generation System (연료전지 발전시스템을 위한 새로운 능동 클램프 전류원 하프 브리지 컨버터)

  • Kim J. T.;Kim S. H.;Lee T. W.;Jang S. J.;Kim S. S.;Won C. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.99-103
    • /
    • 2003
  • Recently, a fuel cell with low voltage and high current of electronic output characteristics is remarkable for new generation system. It needs both a dc-dc boost converter and do-ac inverter to be used in domestic power. Therefore, this paper presents do-dc boost converter with ZVS for fuel cell generation system This topology has several advantages, which are ZVS characteristics of all of main and auxiliary switches, reduction of reactor component size because of high frequency switching, and low rated voltage stress of the switches. In this paper, theoretical analysis, operation principle, and design procedures are presented. And simulation results from Pspice are presented to validate the theoretical analysis.

  • PDF

Hand Pressing Control Using the Five-Axis Force/Moment Sensor of Finger Rehabilitation (손가락 재활로봇의 5축 힘/모멘트센서를 이용한 손 누름제어)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.192-197
    • /
    • 2012
  • This paper describes the control of the hand fixing system attached to the finger rehabilitation robot for the rehabilitation exercise of patient's fingers. The finger rehabilitation robot is used to exercise the finger rehabilitation, and a patient's hand is safely fixed using the hand fixing system. In this paper, the hand fixing system was controlled with PD gains to fix a palm of the hand, and the characteristic test for the hand fixing system was carried out to sense the fixed hand movement of the front and the rear, that of the left and the right, and that of the upper. It is thought that the hand fixing system could safely fix the hand, and the movement of the fixed hand could be perceived using the five-axis force/moment sensor attached to the hand fixing system.

Development of Force Sensors for the Fingers of an Intelligent Robot's Hand (지능형 로봇손을 위한 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.127-133
    • /
    • 2014
  • This paper describes a design and manufacture of a two-axis force sensor and a single-axis force sensor for the fingers of an intelligent robot's hand. The robot's finger is composed of a two-axis force sensor, a first knuckle, a single-axis force sensor, a second knuckle, a spring, a motor of first knuckle, a motor of second knuckle, and so on. The two-axis force sensor attached to the first knuckle and the single-axis force sensor attached to the second knuckle were designed and manufactured, and the characteristics test of two sensors was carried out. As a test results, the interference error of the two-axis force sensor was less than 0.68%, the repeatability error of each sensor was less than 0.02%, and then the non-linearity was less than 0.03%. It is thought that the sensors can be used for the fingers of the intelligent robot's hand for rehabilitation exercise of finger patients.

Design of a Three-Axis Force Sensor for Wrist Bending-Exercise Rehabilitation Robot (손목굽힘운동 재활로봇을 위한 3축 힘센서 설계)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.118-123
    • /
    • 2013
  • Most serious stroke patients have the paralysis of their wrists, and can't use of their hands freely. But their wrists can be recovered by rehabilitation exercise. Recently, professional rehabilitation therapeutists exercise the wrists of stroke patients in hospital. But the wrists of stroke patients have not rehabilitated, because the therapeutists are much less than stroke patients in number. Therefore, the wrist bending-exercise rehabilitation robot that can measure the bending force of the patients' wrists is developed. In this paper, the three-axis force sensor was designed for the wrist bending-exercise rehabilitation robot. As a test results, the interference error of the three-axis force sensor was less than 0.85%. It is thought that the sensor can be used to measure the wrist bending force of the patient.