• 제목/요약/키워드: Rated Load

검색결과 315건 처리시간 0.026초

단상 인버터를 사용한 중성선 전류 저감 기법 (Neutral Current Reduction Method Using Single-Phase Inverter)

  • 민준기;김효성;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.155-157
    • /
    • 2005
  • This paper analyzed the adoption possibility of a low cost single phase active power filter as the neutral current reduction device in three-phase four-wire power system with the balanced or/and unbalnaced nonlinear load conditions. Proposed system can make neutral line current to within rated vale without the phase current THD change of the installed phase line.

  • PDF

Study on Performance of Adaptive Maximum Torque Per Amp Control in Induction Motor Drives at Light Load Operation

  • Kwon, Chun-Ki;Kong, Yong-Hae;Kim, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.249-255
    • /
    • 2017
  • Efficient operation of induction motor at light loads has been getting wide attention recently because the operating of induction motor at light loads occupies big portion of its operating regions in many applications such as environment friendly vehicle. As one of approaches to improve efficiency, Adaptive Maximum Torque Per Amp (Adaptive MTPA) control for induction motor drives has been proposed to achieve a desired torque with the minimum possible stator current. However, the Adaptive MTPA control was validated only at heavy load where, in general, control scheme tends to perform better than at light loads since the error in measurement of sensors is lower and signal to noise is better. Thus, although the performance of a control scheme is good at rated operating point, its performance at light load is somewhat in doubt in practice. This has led to considerable interest in efficiency of Adaptive MTPA control at light loads. This work experimentally demonstrates performance of Adaptive MTPA control at light loads regardless of rotor resistance variation, thus showing its good performance over all operating conditions.

병렬판구조를 이용한 3분력 로드셀 감지부의 설계 (Design of sensing element for 3-component load cell using parallel plate structure)

  • 김갑순;강대임;정수연;주진원
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1871-1884
    • /
    • 1997
  • This paper describes the design process of a 3-component load cell with a multiple parallel plate structure which may be used to measure transverse forces and twisting moment simultaneously. Also we have derived equations to predict the bending strains on the surface of the beams in the multiple parallel plate structure under transverse force or twisting moment. It reveals that the bending strains calculated from the derived equations are in good agreement with the results from finite element analysis and experiment. Also we have evaluated the rated output and interference error of each component, which can be efficiently used to design a 3-component load cell with a multiple parallel plate structure.

Small-Size Induction Machine Equivalent Circuit Including Variable Stray Load and Iron Losses

  • Basic, Mateo;Vukadinovic, Dinko
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1604-1613
    • /
    • 2018
  • The paper presents the equivalent circuit of an induction machine (IM) model which includes fundamental stray load and iron losses. The corresponding equivalent resistances are introduced and modeled as variable with respect to the stator frequency and flux. Their computation does not require any tests apart from those imposed by international standards, nor does it involve IM constructional details. In addition, by the convenient positioning of these resistances within the proposed equivalent circuit, the order of the conventional IM model is preserved, thus restraining the inevitable increase of the computational complexity. In this way, a compromise is achieved between the complexity of the analyzed phenomena on the one hand and the model's practicability on the other. The proposed model has been experimentally verified using four IMs of different efficiency class and rotor cage material, all rated 1.5 kW. Besides enabling a quantitative insight into the impact of the stray load and iron losses on the operation of mains-supplied and vector-controlled IMs, the proposed model offers an opportunity to develop advanced vector control algorithms since vector control is based on the fundamental harmonic component of IM variables.

5상 1.5kW 농형 유도전동기의 운전특성 (Operating Characteristics of Squirrel-Cage Induction Motor of 5-Phase 1.5kW)

  • 김민회;정형우;송현직
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.52-59
    • /
    • 2014
  • This paper presents an improved operating characteristics of squirrel-cage induction motor(IM) for 5-phase 1.5kW, 220V, 60Hz in order to study a polyphase AC machinery that keep hold of advantages more than traditional three-phase a IM, such as reducing a amplitude of torque pulsation, decreasing electric noises, and increasing the reliability. The developed manufacturing motor was necessary to do improvement of speed regulation, efficiency, operating characteristics, and so on at rated load. There are remake a redesigned and distributed stator winding connection without changing the frames of stator and rotor core in previous established the motor by a repeat tests. There are shown a experiments results of no-load test, locked rotor test, operating characteristics at variable load, FFT analysis of harmonics within output voltages and current waveform, decided motor parameters.

A Voltage Regulation System for Independent Load Operation of Stand Alone Self-Excited Induction Generators

  • Kesler, Selami;Doser, Tayyip L.
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1869-1883
    • /
    • 2016
  • In recent years, some converter structures and analyzing methods for the voltage regulation of stand-alone self-excited induction generators (SEIGs) have been introduced. However, all of them are concerned with the three-phase voltage control of three-phase SEIGs or the single-phase voltage control of single-phase SEIGs for the operation of these machines under balanced load conditions. In this paper, each phase voltage is controlled separately through separated converters, which consist of a full-bridge diode rectifier and one-IGBT. For this purpose, the principle of the electronic load controllers supported by fuzzy logic is employed in the two-different proposed converter structures. While changing single phase consumer loads that are independent from each other, the output voltages of the generator are controlled independently by three-number of separated electronic load controllers (SELCs) in two different mode operations. The aim is to obtain a rated power from the SEIG via the switching of the dump loads to be the complement of consumer load variations. The transient and steady state behaviors of the whole system are investigated by simulation studies from the point of getting the design parameters, and experiments are carried out for validation of the results. The results illustrate that the proposed SELC system is capable of coping with independent consumer load variations to keep output voltage at a desired value for each phase. It is also available for unbalanced consumer load conditions. In addition, it is concluded that the proposed converter without a filter capacitor has less harmonics on the currents.

Analysis of the load distribution and contact safety factor of PTO gears of a 71 kW class agricultural tractor

  • Baek, Seung-Min;Kim, Wan-Soo;Kim, Yeon-Soo;Lee, Nam-Gyu;Kim, Nam-Hyeok;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제47권2호
    • /
    • pp.327-335
    • /
    • 2020
  • The purpose of this study was to analyze the load distribution and contact safety factor for the power take off (PTO) gear of a 71 kW class agricultural tractor. In this study, a simulation model of the PTO gear-train was developed using Romax DESGINER. The face load factor and contact safety factor were calculated using ISO 6336:2006. The simulation time was set at 2,736 hours considering the lifetime of the tractor, and the simulation was performed for each PTO gear stage at the engine rated power conditions. As a result of the simulation, the face load factors for the driving gear at the PTO 1st, 2nd and 3rd stages were 1.644, 1.632, and 1.341, respectively. The contact safety factors for the driving gear at the PTO 1st, 2nd and 3rd stages were 1.185, 1.216, and 1.458, respectively. As the PTO gear stage was increased, the face load factor decreased, and the contact safety factor increased. The load distributions for all the PTO gears were concentrated to the right of the tooth width. This causes stress concentrations and shortens the lifespan of the gears. Therefore, it is necessary to improve the face load factor and the contact safety factor with macro-geometry and micro-geometry.

단상 유도전동기의 무부하손실을 고려한 등가회로 정수의 결정 (Determination of Parameters of Equivalent Circuit Taking No-Load Losses Into Account for Single-Phase Induction Motors)

  • 좌종근;김도진
    • 전기학회논문지P
    • /
    • 제59권4호
    • /
    • pp.358-363
    • /
    • 2010
  • This paper proposes a step-by-step method of determining the parameters of equivalent circuit which is considered the no load losses for the single phase induction motor which has the starting winding. This method is comprised of three steps, and the stator resistance which is measured by the method of voltage drop is treated as constant and the stator and the rotor leakage reactances are assumed to be the same in every step. The test results of no load and locked rotor test are used in the 1st and 2nd step, and the ratings of name plate of the motor are needed in the 3rd step. In the 1st step, the traditional equivalent circuit parameters are directly calculated by no load and locked rotor conditions. In the next step, five nonlinear simultaneous equations for five unknown parameters can be set up by no load and locked rotor equivalent circuits. These equations are solved by using the initial parameters obtained by the 1st step parameters. In the final step, three nonlinear simultaneous equations for rotor winding resistance, leakage reactance and no load losses component resistance can be set up by equivalent circuit under the rated operation. Three parameters are solved by using the 2nd step parameters. Thus, equivalent circuit parameters are gradually refined step by step. The validity of the proposed method is evaluated by comparing the computed values obtained by the equivalent circuit parameters with the experimental values of the load test.

필드 부하를 활용한 정유압기계식 변속시스템의 기어 해석 (Gear Analysis of Hydro-Mechanical Transmission System using Field Load Data)

  • 김정길;이동근;오주영;남주석
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.111-120
    • /
    • 2021
  • A tractor is an agricultural machine that performs farm work, such as cultivation, soil preparation, loading, bailing, and transporting, through attached working implements. Farm work must be carried out on time per the growing season of crops. As a result, the reliability of a tractor's transmission is vital. Ideally, the transmission's design should reflect the actual load during agricultural work; however, configuring such a measurement system is time- and cost-intensive. The design and analysis of a transmission are, therefore, mainly performed by empirical methods. In this study, a tractor with a measurement system was used to measure the actual working load in the field. Its hydro-mechanical transmission was then analyzed using the measured load. It was found that the velocity factor, load distribution factor, lubrication factor, roughness factor, relative notch sensitivity factor, and life factor affect the gear strength of the transmission. Also, loading conditions have a significant influence on the reliability of the transmission. It is believed that transmission reliability can be enhanced by analyzing the actual load on the transmission, as performed in this study.

Sensorless Starting of Direct Drive Horizontal Axis Washing Machines

  • Dianov, Anton;Kim, Nam Su;Lim, Seung Moo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권2호
    • /
    • pp.148-154
    • /
    • 2014
  • This paper describes problems of the sensorless starting of horizontal axis washing machines with direct drive and suggests solution, which was experimentally verified. Horizontal axis washing machines have very difficult conditions for the drive starting, especially at full load. Inertia of the tub and water, torque from the laundry make load torque at starting higher than rated one and sometimes even higher than the maximum torque of the motor, which makes sensorless starting extremely challenging task. This paper suggests modified open-loop starting, where control system is closed shortly after beginning at low speed and rotates the drum until laundry restructuring. To ensure proper work of the sensorless algorithm at low speed additional measures for increasing of the estimation algorithm performance have been taken. These measures include special algorithm for the drive parameters estimation, which has been developed and verified by the experimental results.