• Title/Summary/Keyword: Rate-of-Loading

Search Result 2,100, Processing Time 0.04 seconds

Shear strength behaviour of coral gravelly sand subjected to monotonic and cyclic loading

  • Vu, Anh-Tuan
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.89-98
    • /
    • 2021
  • The paper presents an experimental study on the strength behaviour of a coral gravelly sand from Vietnam subjected to monotonic and cyclic loading. A series of direct shear tests were carried out to investigate the shear strength behaviour and the factors affecting the shear strength of the sand such as relative density, cyclic load, amplitude of the cyclic load and loading rate. The study results indicate that the shear strength parameters of the coral gravelly sand include not only internal friction angle but also apparent cohesion. These parameters vary with the relative density, cyclic load, the amplitude of the cyclic load and loading rate. The shear strength increases with the increase of the relative density. The shear strength increases after subjecting to cyclic loading. The amplitude of the cyclic load affects the shear strength of coral gravelly sand, the shear strength increases as the amplitude of the cyclic load increases. The loading rate has insignificantly effect on the shear strength of the coral gravelly sand.

Dynamic tensile behavior of PMMA (PMMA의 동적 인장 거동)

  • Lee, Ouk-Sub;Kim, Myun-Soo;Hwang, Si-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.395-400
    • /
    • 2001
  • The Split Hopkinson Pressure Bar(SHPB) technique, a special experimental apparatus, has been used to obtain the material behavior under high strain rate loading condition. In this paper, dynamic deformation behaviors of the PMMA under high strain rate tensile loading are determined using SHPB technique.

  • PDF

Chemical/Electro-Chemical Method for Swine Wastewater Treatment (화학적/전기화학적 방법을 이용한 돈사폐수 처리)

  • Yoon, S.J.;Jo, W.S.;Kim, C.H.;Park, J.I.;Shin, J.S.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.641-648
    • /
    • 2003
  • In a batch mode treatment process, which electrolyzes the wastewater after derivation of N-P crystal formation and recovery, the characteristics of pollutant removal induced with the changes of loading rate and hydraulic retention time were studied. $MgCl_2$ was used as Mg source for the formation of struvite and the molar ratio of $MgCl_2$ to $PO_4^{3-}$ in influent was 1.3. When analyzing the average treatment efficiencies and removal characteristics obtained from four separate operations (Run I, II, III, IV), removal efficiencies of PO43- was not function of its loading rate. Under a condition of sufficient aeration and Mg source provided, over 88% of $PO_4^{3-}$ was eliminated by the formation of MAP without any pH adjustment, in spite of loading rate variation. An optimum-loading rate of NH4-N to achieve high removal efficiency was approximately $100g/m^3/d$. Below that loading rate, the removal of NH4-N was proportional to the loading rate into the system, and hence stable and high removal efficiency, over 90%, was achieved. However, when the loading rate increased over that rate, removal efficiency began to drop and fluctuate. Removal efficiency of TOCs was dependant upon the hydraulic retention time ($r^2$=0.97), not upon the loading rate. Stable and high color removal (94%) was obtained with 2 days of HRT in electrolysis reactor.

Characteristics and Biological Kinetics of Nitrogen Removal in Wastewater using Anoxic-RBC Process (무산소-RBC 공정을 이용한 질소제거 특성 및 동력학적 인자 도출)

  • 최명섭;손인식
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1085-1093
    • /
    • 2003
  • This study was conducted to investigate anoxic-RBC (rotating biological contactor) and its application in advanced municipal wastewater treatment process to remove biologically organics and ammonia nitrogen. Effluent COD and nitrogen concentration increased as the increase of volumetric loading rate. But, the concentration changes of NO$_2$$\^$-/ -N and NO$_3$$\^$-/ -N were little, as compared to COD and NH$_4$$\^$+/ -N. When the volumetric loading rate increased, COD removal efficiency and nitrification appeared very high as 96.7∼98.8% and 92.5∼98.8%, respectively. However, denitrification rate decreased to 76.2∼88.0%. These results showed that the change of volumetric loading rate affected to the denitrification rate more than COD removal efficiency or nitrification rate. The surface loading rates applied to RBC were 0.13~6.0lg COD/㎡-day and 0.312∼1.677g NH$_4$$\^$+/-N㎡-day and they were increased as the increase of volumetric loading rate. However, the nitrification rate showed higher than 90%. The thickness of the biofilm in RBC was 0.130 ∼0.141mm and the density of biofilm was 79.62∼83.78mg/㎤. They were increased as surface loading rate increased. From batch kinetic tests, the k$\_$maxH/ and k$\_$maxN/ were obtained as 1.586 g C/g VSS-day, and 0.276 g N/g VSS-day, respectively. Kinetic constants of denitrifer in anoxic reactor, Y, k$\_$e/, K$\_$s/, and k were 0.678 mg VSS/mg N, 0.0032 day$\^$-1/, 29.0 mg N/l , and 0.108 day$\^$-l/, respectively. P and K$\_$s/, values of nitrification and organics removal in RBC were 0.556 g N/㎡-day and 18.71 g COD/㎡-day, respectively.

An Experimental Study on Effects of Soot Loading and Mass Flow Rate on Pressure Drop and Heat Transfer in Catalyzed Diesel Particulate Filter (촉매 코팅 DPF의 soot loading과 유량 변화에 따른 압력강하 및 열전달에 관한 실험적 연구)

  • Cho, Yong-Seok;Noh, Young-Chang;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.72-78
    • /
    • 2007
  • A diesel particulate filter causes progressive increase in back pressure of an exhaust system due to the loading of soot particles. To maintain the pressure drop caused by DPF under proper level, a regeneration process is mandatory when excessive loading of soot is detected in the filter. It is a major reason why the relation between the amount of soot and the pressure drop in a DPF becomes crucial. On the other hand, pressure drop varies with not only the soot loading but also conditions of exhaust gas such as mass flow rate. Therefore, the relation among them becomes complicated. Furthermore, the characteristics of heat transfer in a DPF is another crucial parameter in order for the filter to avoid thermal crack during regeneration period. This study presents characteristics of pressure drop under various conditions of soot loading and mass flow rate in catalyzed diesel particulate filter. This study also shows characteristics of heat transfer in DPF when high temperature gas flows into the filter. Experiments reveal that the soot loading and mass flow rate affect characteristics pressure drop independently. Experiments also indicate that the amount of coating material has little influence on pressure drop with changes in soot loading and mass flow rate. However, increased catalyst coating may lead to the improved heat transfer which is efficiency to reduce thermal stress of the filter.

Characteristics of the Lateral Resistance of Pile according to the Lateral Loading Rate in Dense Sand (조밀한 모래지반에서 수평재하속도에 따른 말뚝의 수평저항 특성)

  • Gichun Kang;Hyejeong Park;Seong-kyu Yun;Jiseong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.97-103
    • /
    • 2023
  • Recently, research on the lateral resistance of pile foundations has been actively conducted. In experimental studies on the lateral resistance of pile foundations, displacement control or load control methods are used. However, in the case of the displacement control method, the lateral resistance of the pile varies depending on the rate of the load applied to the pile. Therefore, this study seeks to determine the change in lateral resistance of pile foundations according to lateral loading rate through model experiments. The experimental results showed that the lateral resistance of the pile tended to decrease as the lateral loading rate applied to the pile head increased. In order to confirm this, a model experiment of the side change of the ground and pile according to the loading rate was additionally conducted. Through inverse analysis, the change in the depth of the rotation point according to the lateral loading rate was identified. Through the change in the lateral resistance of the pile foundation and the depth of the rotating point according to the lateral loading rate, it was proposed to test the loading rate within 1.5 mm/min during the lateral loading test of the pile.

Phase Transformation of Silicon by Indentation (압입법에 의한 실리콘의 상전이)

  • Kim, Sung-Soon;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1149-1152
    • /
    • 2002
  • Indentation was used to analyze high pressure phases of silicon. Phase transformations on both loading time and loading rate were studied. Micro-raman spectroscopy was used to observe the indentation-induced transformations. As the loading time increased, Si-III and Si-XII disappeared and only a-Si was observed in (111) samples. As the loading time increased, the residual stress was removed by creation of cracks or dislocations. At 0.1 mm/min loading rate, pop-in . At 5 mm/min loading rate pop-in was observed in force/displacement curve of (111) sample, but pop-in was not observed in force/displacement curve of (100) sample. This result indicates that the loading rate affects the volume of phase transformation in silicon.

Investigation of rate dependent shear bond properties of concrete masonry mortar joints under high-rate loading

  • John E. Hatfield;Genevieve L. Pezzola;John M. Hoemann;James S. Davidson
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.519-533
    • /
    • 2024
  • Many materials including cementitious concrete-type materials undergo material property changes during high-rate loading. There is a wealth of research regarding this phenomenon for concrete in compression and tension. However, there is minimal knowledge about how mortar material used in concrete masonry unit (CMU) construction behaves in high-rate shear loading. A series of experiments was conducted to examine the bond strength of mortar bonded to CMU units under high-rate shear loading. A novel experimental setup using a shock tube and dynamic ram were used to load specially constructed shear triplets in a double lap shear configuration with no pre-compression. The Finite Element Method was leveraged in conjunction with data from the experimental investigation to establish if the shear bond between concrete masonry units and mortar exhibits any rate dependency. An increase in shear bond strength was observed when loaded at a high strain rate. This data indicates that the CMU-mortar bond exhibits a rate dependent strength change and illustrates the need for further study of the CMU-mortar interface characteristics at high strain rates.

Design of Residual Treatment Process with Filter Backwash Recycle System (역세척수 회수시스템이 포함된 배출수처리공정의 설계)

  • Bae, Byung-Uk;Choi, Kyung-Hwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.109-114
    • /
    • 2012
  • In this study, both sedimentation and thickening experiments were conducted for residuals produced from an advanced water treatment plant for more accurate and practical design of residual treatment train. In order to design a backwashed residual sedimentation basin (SRSB) in the filter backwash water recycle system, two kinds of backwash waters, one from sand filter (SFBW) and the other from GAC adsorption bed (GACBW), were separately collected and their surface loading rate measured. In addition, in order to design a gravity thickener, batch thickening tests were conducted for concentrated residuals taken from sedimentation basin and their limiting solid flux ($SF_{L}$) measured. From the experimental results and consideration of the seasonal characteristics of the residual, surface loading rate of $70m^{3}/m^{2}{\cdot}d$ was proposed as a design parameter for SRSB and solid loading rate of 20 kg $TS/m^{2}{\cdot}d$ was proposed as a design parameter for gravity thickeners. Finally, the material mass-balance was made for the design of each unit process in the residual treatment train.

Rate-dependent Viscoplastic-Damage Model of Concrete under Cyclic Loading (반복하중을 받는 콘크리트의 재하속도 의존 점소성-손상 모델)

  • 송하원;임현우;김인순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.468-473
    • /
    • 1998
  • The objective of this paper is to develop a consistent algorithm for the finite element analysis for behavior of concrete under cyclic loading using viscoplastic-damage model. For modeling the behavior of concrete under cyclic loading, consistent algorithms of rate-dependent viscoplastic-damage are employed with a Willam-Warnke 5-parameter failure criterion which can consider the softening behavior of concrete and consistent tangent moduli are derived. Using finite element program implemented with the developed algorithms, the algorithms are verified and the behaviors of concrete under cylic loading are simulated and compared with experimental data.

  • PDF