• Title/Summary/Keyword: Rate of penetration

Search Result 865, Processing Time 0.024 seconds

Salt Penetration Properties of Anchovy (Engraulis japonica) Muscle Immersed in Brine (멸치(Engraulis japonica)육의 물간법 중 염침투 특성)

  • Oh, Se-Wook;Lee, Nam-Hyouck;Kim, Young-Myoung;Nam, Eun-Jung;Jo, Jin-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1196-1201
    • /
    • 1997
  • As a basic study to develop low-salted fermented anchovy, rates of salt penetration into anchovy muscle, patterns of protein degradation and changes in water activity and transfer was analyzed after brining at various salt (NaCl) concentration. The salt penetration curves followed first order. kinetics. The rate constant (k) increased from 0.018 (10% NaCl solution) to 0.051 (saturated). Water activity was reduced from 0.93 (10% NaCl solution) to 0.77 (saturated). Protein degradation during brining was Somewhat occurred in 10% NaCl solution but not in satutrated solution. Water content of anchovy muscle were 74% (w/w), 65% and 58% when 10%, 20% and saturated NaCl solution were used, respectively. This result indicated that as NaCl content of brining solution was increased, the amount of water transfer also occurred. Weight of anchovy increased at 10% NaCl solution and decreased at 20% and saturated NaCl solution. The loss of anchovy solid mash during brining was calculated as 30% after 36 hr brining.

  • PDF

A study on the maximum penetration limit of wind power considering output limit of WTGs (풍력발전기 출력제한을 고려한 풍력한계용량 산정에 관한 연구)

  • Kim, Hyeong-Taek;Myeong, Ho-San;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.23-31
    • /
    • 2011
  • The wind energy is one of the most prospective resources in renewable energy. However, the WTGS shouldn't be installed indiscriminately because the power system can be negatively influenced by a variable and uncertain nature of the wind energy. It is the reason why it has to be limited to install the WTGS thoughtlessly mentioned above that support the importance of the maximum penetration limit of wind power. It may required that power system operators suggests a new way of power system operation as percentage of the WTGS increase in the existing power system. The wind power is fixed in a limited area, so using rate of the wind power will be increased by installing additional WTGS. In this paper, we have studied on economic evaluation of the wind capacity increased by restricting the output of the WTGS as the way to increase the wind capacity.

The Effect of Welding Parameters on the Weld Shape in Pulsed GTA Welding of a STS304L Stainless Steel Capsule (STS304L 캡슐의 펄스형 GTA 용접에서 용접변수들이 용접부 형상에 미치는 영향)

  • Lee, Hyoung-Keun;Han, Hyon-Soo;Son, Kwang-Jae
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.64-71
    • /
    • 2007
  • The aim of this paper is to investigate the effects of welding parameters on the weld shape in seal-welding of STS304L capsule for manufacturing a radioisotope source which is widely used in nondestructive testing of metal structures using gamma ray. Pulsed gas tungsten arc (Pulsed GTA) welding is performed for thin cross sectional area of the capsule. Seven welding parameters including current waveform parameters and arc length etc. are selected as main process parameters using design of experiment. The weld shape such as bead width, penetration depth, weld area, aspect ratio and area rate is investigated to assess the effects of welding parameters. As results, the combination of pulse duty/welding speed largely affects on bead width, penetration depth, area and aspect ratio. Finally, it is concluded that the key parameters are the combination of pulse duty/welding speed, base current and arc length, and their optimal conditions are 50%/1.77mm/s, 6.4A and 1 mm.

Comparison of Welding Characteristics of Austenitic 304 Stainless Steel and SM45C Using a Continuous Wave Nd:YAG Laser (오스테나이트계 스테인리스강과 SM45C의 연속파형 Nd:YAG 레이저 용접특성비교)

  • 유영태;오용석;노경보;임기건
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless and SM45C using a continuous wave Nd:YAG laser n experimentally investigated Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much Inter than those involved in conventional welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar and plates, etc. The Nd:YAG laser welding process is one of the most advanced manufacturing technologies owing to its high speed and penetration. This paper describes the weld ability of SM45C carbon steel for machine structural use by Nd:YAG laser. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

Effect of Vehicles and Enhancers on the in vitro Skin Penetration of Aspalatone and Its Enzymatic Degradation Across Rat Skins

  • Gwak, Hye-Sun;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.572-577
    • /
    • 2001
  • The feasibility of skin penetration was studied for aspalatone (AM, acetylsalicylic acid maltol ester), a novel antithrombotic agent. In this studys hairless mouse dorsal skins were used as a model to select composition of vehicle and AM. Based on measurements of solubility and partition coefficient, the concentration of PC that showed the highest flux for AM across the hairless mouse skin was found to be 40%. The cumulative amount permeated at 48 h, however, appear inadequate, even when the PC concentration was employed. To identify a suitable absorption enhancer and its optimal concentration for AM, a number of absorption enhancers and a variety of concentration were screened for the increase in transdermal flux of AM. Amongst these, linoleic acid (LOA) at the concentration of 5% was found to have the largest enhancement factor (i.e., 132). However, a further increase in AM flux was not found in the fatty acid concentration greater than 5%, indicating the enhancement effect is in a bell-shaped currie. In a study of the effect of AM concentration on the permeation, there was no difference in the permeation rate between 0.5 and 1% for AM, below its saturated concentration. At the donor concentration of 2%, over the saturated condition, the flux of AM was markedly increased. A considerable degradation of AM was found during permeation studies, and the extent was correlated with protein concentrations in the epidermal and serosal extracts, and skin homogenates. In rat dorsal skins, the protein concentration decreased in the rank order of skin homogenate > serosal extract > epidermal extract. Estimated first order degradation rate constants were $6.15{\pm}0.14,{\;}0.57{\pm}0.02{\;}and{\;}0.011{\pm}{\;}0.004{\;}h^{-1}$ for skin homogenate, serosal extract and epidermal extract, respectively. Therefore, it appeared that AM was hydrolyzed to some extent into salicylmaltol by esterases in the dermal and subcutaneous tissues of skin. taken together, our data indicated that transdermal delivery of AM is feasible when the combination of PC and LOA is used as a vehicle. However, since AM is not metabolically stable, acceptable degradation inhibitors may be nervessary to fully realize the transdermal delivery of the drug.

  • PDF

Effects of Vehicles and Penetration Enhancers on the Percutaneous Absorption of Apomorphine (기제와 피부투과촉진제가 아포모르핀의 피부투과에 미치는 영향)

  • Choi, Young-Geun;Cui, Yu;Kim, Keun-Nam;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.129-133
    • /
    • 2003
  • In order to evaluate the effects of vehicles and penetration enhancers on skin permeation of apomorphine, the skin permeation rates of apomorphine from vehicles of different composition were determined using Franz diffusion cells fitted with excised rat skins. Solubility of apomorphine in various solvents was investigated to select a vehicle suitable for the percutaneous absorption of apomorphine. The solvents used were propylene glycol (PG), $Transcutol^{\circledR},\;Labrasol^{\circledR},\;Labrafac hydro WL^{\circledR},\;Labrafil WL 2609 BS^{\circledR}$ and isopropyl alcohol. Even though permeation rates of apomorphine from each vehicle were low $(0.008-0.36\;{\mu}g/cm^2/hr)$, the combination of PG and $Labrafac^{\circledR}$ increased it significantly. The permeation rates of apomorphine from $PG/Labrafac^{\circledR}$ mixtures increased as the volume fraction of PG in the mixture increased. The maximum permeation rate of $18\;{\mu}g/cm^2/hr$ was achieved at 30% of PG, which decreased with further increase of PG fraction. A series of fatty acids, alcohols and monoterpenes were employed as penetration enhancers. Incorporation of each enhancer in the $PG/Labrafac^{\circledR}$ (30:70) mixture at the level of 10% improved the skin permeation significantly. The highest permeation rate, $117\;{\mu}g/cm^2/hr$, was attained with myristic acid.

A Study on the Spray and Combustion Characteristics of Diesel-ethanol-biodiesel Blended Fuels in a Diesel Engine (디젤엔진에서 디젤-에탄올-바이오디젤 혼합연료의 분무 및 연소 특성에 관한 연구)

  • Park, Su-Han;Youn, In-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.76-84
    • /
    • 2010
  • The aim of this study is to analyze the effect of the ethanol blending in diesel-ethanol blended fuels on the spray and combustion characteristics in a common-rail four-cylinder diesel engine. For the analysis of the spray characteristics, the spray images were obtained using a high speed camera with metal-halide lamps. From these spray images, the macroscopic spray characteristics such as the spray tip penetration and spray cone angle were investigated. Also, the combustion characteristics including the combustion pressure and the rate of heat release were studied with the analysis of the exhaust emissions in diesel-ethanol blended fuel driven diesel engine. It can be confirmed from the experiment on spray characteristics of diesel-ethanol blended fuels that the increased ethanol blending ratio induced the decrease of the spray tip penetration after the end of the injection. The spray cone angle slightly increased by the blending of ethanol fuel. In the experiment on atomization characteristics, the ethanol blending caused the improvement of the diesel atomization performance. On the other hand, at the same engine load condition, the increase of the ethanol blending ratio lead to lengthen the ignition delays, and to decrease the peak combustion pressure and the rate of heat release. Totally, the combustion and emission characteristics of ULSD and DE10 showed similar characteristics. However, in the case of DE20, CO and HC rapidly increased, and $NO_x$ decreased. It can be believed that 20% ethanol disturbed the combustion of diesel-ethanol blended fuel due to the low cetane number and evaporation.

Optimization of the in vitro fertilization system in pigs

  • Song-Hee Lee;Xiang-Shun Cui
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.70-76
    • /
    • 2023
  • Background: Despite considerable technological advancements, polyspermy remains a significant challenge in in vitro fertilization (IVF) procedures in pigs, disrupting normal embryonic development. Here, we aimed to determine whether optimal fertilization conditions reduce the polyspermy incidence in pigs. Methods: In vitro-matured oocytes were co-incubated with sperm according to a modified two-step culture system. Results: In the first experiment, oocytes were briefly co-incubated with sperm, washed in IVF medium, and then moved to fresh IVF medium for 5 or 6 h. Although the 6 h sperm-free cultured group had a higher penetration rate than the 5 h cultured group, the polyspermy rate significantly increased in the 6 h sperm-free cultured group. The gamete co-incubation period was either 20 or 40 min. The 40 min cultured group had a higher rate of blastocyst formation and number of total cells in blastocysts than the 20 min cultured group. In experiment 2, oocytes were inseminated with sperm separated by Pecroll treatment. Percoll treatment increased the rate of oocyte penetration and blastocyst formation compared to the control. In experiment 3, fertilized oocytes were cultured in 25 µL microdroplets (10 gametes/drop) or 500 µL (100 gametes/well) of culture medium in 4-well plates. The large volume of medium significantly reduced the number of dead oocytes and increased the rate of blastocyst formation compared to the small volume. Conclusions: Collectively, these results demonstrate that various fertilization conditions, including modified co-culture period, active sperm separation, and culture medium volume, enhance fertilization efficiency and subsequent embryonic development by decreasing polyspermy occurrence.

Transdermal Penetration of Synthetic Peptides and Their Penetration Enhancement Caused by Some Terpene Compounds

  • Ham, Seung-Wook;Kang, Myung-Joo;Park, Young-Mi;Oh, Il-Young;Kim, Bo-Gyun;Im, Tae-Jong;Kim, Sung-Hee;Choi, Young-Wook;Lee, Jae-Hwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1535-1538
    • /
    • 2007
  • The work presented in this paper represents a study of the rate and extent of transdermal penetration of three synthetic hexapeptides consisting only of glycine (Gly) and phenylalanine (Phe) as the constituent amino acids and they include Phe-Gly-Gly-Gly-Gly-Gly (Pep-1), Phe-Phe-Gly-Gly-Gly-Gly (Pep-2), and Phe-Phe-Phe- Gly-Gly-Gly (Pep-3). The present study demonstrated the extent to which the peptides having a high metabolic stability were transdermally transported from the various vehicles. The results of this study appear to indicate that minor differences in the lipophilicity of the synthetic hexapeptides have a slight influence on the rate and extent of transport. In the presence of terpene permeation enhancers, together with ethanol (i.e., menthone/ EtOH, carveol/EtOH or cineole/EtOH), the peptides were more rapidly penetrated through the skin and among the terpenes tested, cineole was the most effective for all three peptides. The maximum enhancement ratio of approximately 2 was achieved by cineole in 50% ethanol solution.