DOI QR코드

DOI QR Code

Optimization of the in vitro fertilization system in pigs

  • Song-Hee Lee (Department of Animal Science, Chungbuk National University) ;
  • Xiang-Shun Cui (Department of Animal Science, Chungbuk National University)
  • Received : 2023.05.23
  • Accepted : 2023.06.09
  • Published : 2023.06.30

Abstract

Background: Despite considerable technological advancements, polyspermy remains a significant challenge in in vitro fertilization (IVF) procedures in pigs, disrupting normal embryonic development. Here, we aimed to determine whether optimal fertilization conditions reduce the polyspermy incidence in pigs. Methods: In vitro-matured oocytes were co-incubated with sperm according to a modified two-step culture system. Results: In the first experiment, oocytes were briefly co-incubated with sperm, washed in IVF medium, and then moved to fresh IVF medium for 5 or 6 h. Although the 6 h sperm-free cultured group had a higher penetration rate than the 5 h cultured group, the polyspermy rate significantly increased in the 6 h sperm-free cultured group. The gamete co-incubation period was either 20 or 40 min. The 40 min cultured group had a higher rate of blastocyst formation and number of total cells in blastocysts than the 20 min cultured group. In experiment 2, oocytes were inseminated with sperm separated by Pecroll treatment. Percoll treatment increased the rate of oocyte penetration and blastocyst formation compared to the control. In experiment 3, fertilized oocytes were cultured in 25 µL microdroplets (10 gametes/drop) or 500 µL (100 gametes/well) of culture medium in 4-well plates. The large volume of medium significantly reduced the number of dead oocytes and increased the rate of blastocyst formation compared to the small volume. Conclusions: Collectively, these results demonstrate that various fertilization conditions, including modified co-culture period, active sperm separation, and culture medium volume, enhance fertilization efficiency and subsequent embryonic development by decreasing polyspermy occurrence.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea grant funded by the Korea government (MSIT) (No. 2022R1A2C300769), Republic of Korea.

References

  1. Abeydeera LR and Day BN. 1997. In vitro penetration of pig oocytes in a modified Tris-buffered medium: effect of BSA, caffeine and calcium. Theriogenology 48:537-544. https://doi.org/10.1016/S0093-691X(97)00270-7
  2. Alminana C, Gil MA, Cuello C, Roca J, Vazquez JM, Rodriguez-Martinez H, Martinez EA. 2005. Adjustments in IVF system for individual boars: value of additives and time of spermoocyte co-incubation. Theriogenology 64:1783-1796. https://doi.org/10.1016/j.theriogenology.2005.04.008
  3. Coy P, Martinez E, Ruiz S, Vazquez JM, Roca J, Matas C. 1993. Sperm concentration influences fertilization and male pronuclear formation in vitro in pigs. Theriogenology 40:539-546. https://doi.org/10.1016/0093-691X(93)90407-V
  4. Dirnfeld M, Bider D, Koifman M, Calderon I, Abramovici H. 1999. Shortened exposure of oocytes to spermatozoa improves in-vitro fertilization outcome: a prospective, randomized, controlled study. Hum. Reprod. 14:2562-2564. https://doi.org/10.1093/humrep/14.10.2562
  5. Gil MA, Roca J, Cremades T, Hernandez M, Vazquez JM, Rodriguez-Martinez H, Martinez EA. 2005. Does multivariate analysis of post-thaw sperm characteristics accurately estimate in vitro fertility of boar individual ejaculates? Theriogenology 64:305-316. https://doi.org/10.1016/j.theriogenology.2004.11.024
  6. Gil MA, Ruiz M, Vazquez JM, Roca J, Day BN, Martinez EA. 2004. Effect of short periods of sperm-oocyte coincubation during in vitro fertilization on embryo development in pigs. Theriogenology 62:544-552. https://doi.org/10.1016/j.theriogenology.2003.11.001
  7. Han YM, Abeydeera LR, Kim JH, Moon HB, Cabot RA, Day BN, Prather RS. 1999. Growth retardation of inner cell mass cells in polyspermic porcine embryos produced in vitro. Biol. Reprod. 60:1110-1113. https://doi.org/10.1095/biolreprod60.5.1110
  8. Henkel RR and Schill WB. 2003. Sperm preparation for ART. Reprod. Biol. Endocrinol. 1:10.
  9. Hunter RH. 1990. Fertilization of pig eggs in vivo and in vitro. J. Reprod. Fertil. Suppl. 40:211-226.
  10. Hunter RH. 1991. Oviduct function in pigs, with particular reference to the pathological condition of polyspermy. Mol. Reprod. Dev. 29:385-391. https://doi.org/10.1002/mrd.1080290411
  11. Jeong BS and Yang X. 2001. Cysteine, glutathione, and Percoll treatments improve porcine oocyte maturation and fertilization in vitro. Mol. Reprod. Dev. 59:330-335. https://doi.org/10.1002/mrd.1038
  12. Jeon Y, Yoon JD, Cai L, Hwang SU, Kim E, Lee E, Jeung EB, Hyun SH. 2015. Effect of zinc on in vitro development of porcine embryos. Theriogenology 84:531-537. https://doi.org/10.1016/j.theriogenology.2015.04.006
  13. Koo DB, Kim YJ, Yu I, Kim HN, Lee KK, Han YM. 2005. Effects of in vitro fertilization conditions on preimplantation development and quality of pig embryos. Anim. Reprod. Sci. 90:101-110. https://doi.org/10.1016/j.anireprosci.2005.01.005
  14. Kwon J, Jo YJ, Yoon SB, You HJ, Youn C, Kim Y, Lee J, Kim NH, Kim JS. 2022. M6A reader hnRNPA2/B1 is essential for porcine embryo development via gene expression regulation. J. Anim. Reprod. Biotechnol. 37:121-129. https://doi.org/10.12750/JARB.37.2.121
  15. Le Bras A, Hesters L, Gallot V, Tallet C, Tachdjian G, Frydman N. 2017. Shortening gametes co-incubation time improves live birth rate for couples with a history of fragmented embryos. Syst. Biol. Reprod. Med. 63:331-337. https://doi.org/10.1080/19396368.2017.1336581
  16. Machaty Z, Day BN, Prather RS. 1998. Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59:451-455. https://doi.org/10.1095/biolreprod59.2.451
  17. Mahe C, Zlotkowska AM, Reynaud K, Tsikis G, Mermillod P, Druart X, Schoen J, Saint-Dizier M. 2021. Sperm migration, selection, survival, and fertilizing ability in the mammalian oviduct. Biol. Reprod. 105:317-331. https://doi.org/10.1093/biolre/ioab105
  18. Marchal R, Feugang JM, Perreau C, Venturi E, Terqui M, Mermillod P. 2001. Meiotic and developmental competence of prepubertal and adult swine oocytes. Theriogenology 56:17-29. https://doi.org/10.1016/S0093-691X(01)00539-8
  19. Marchal R, Pelaez J, Terqui M, Mermillod P. 2002. Effect of sperm survival and CTC staining pattern on in vitro fertilization of porcine oocytes. Theriogenology 57:1917-1927. https://doi.org/10.1016/S0093-691X(02)00692-1
  20. Matas C, Coy P, Romar R, Marco M, Gadea J, Ruiz S. 2003. Effect of sperm preparation method on in vitro fertilization in pigs. Reproduction 125:133-141. https://doi.org/10.1530/rep.0.1250133
  21. Palomo MJ, Izquierdo D, Mogas T, Paramio MT. 1999. Effect of semen preparation on IVF of prepubertal goat oocytes. Theriogenology 51:927-940. https://doi.org/10.1016/S0093-691X(99)00039-4
  22. Parrish JJ, Krogenaes A, Susko-Parrish JL. 1995. Effect of bovine sperm separation by either swim-up or Percoll method on success of in vitro fertilization and early embryonic development. Theriogenology 44:859-869. https://doi.org/10.1016/0093-691X(95)00271-9
  23. Reed ML. 2012. Culture systems: embryo density. Methods Mol. Biol. 912:273-312. https://doi.org/10.1007/978-1-61779-971-6_16
  24. Rodriguez-Martinez H, Larsson B, Pertoft H. 1997. Evaluation of sperm damage and techniques for sperm clean-up. Reprod. Fertil. Dev. 9:297-308. https://doi.org/10.1071/R96081
  25. Romar R, Canovas S, Matas C, Gadea J, Coy P. 2019. Pig in vitro fertilization: where are we and where do we go? Theriogenology 137:113-121. https://doi.org/10.1016/j.theriogenology.2019.05.045
  26. Sananmuang T, Tharasanit T, Nguyen C, Phutikanit N, Techakumphu M. 2011. Culture medium and embryo density influence on developmental competence and gene expression of cat embryos. Theriogenology 75:1708-1719. https://doi.org/10.1016/j.theriogenology.2011.01.008
  27. Zhou D, Niu Y, Cui XS. 2020. M-RAS regulate CDH1 function in blastomere compaction during porcine embryonic development. J. Anim. Reprod. Biotechnol. 35:12-20. https://doi.org/10.12750/JARB.35.1.12