• Title/Summary/Keyword: Rate of mass combustion

Search Result 337, Processing Time 0.028 seconds

The evaluation of diesel emission reduction characteristics by DOC in light-duty vehicle (소형디젤산화촉매의 배출가스 성능평가)

  • 엄명도;류정호;임철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.34-42
    • /
    • 1999
  • In late 1997, the portion of registered light-duty diesel vehicle was 25.3% and its emission rate was 17.1% in Korea. Especially, diesel particulate matters(DPM) and NOx are hazardous air pollutants to human health and environment in urban area. The reduction technologies of exhaust emissions from diesel engines are improvement of engine combustion, fuel quality and development of diesel exhaust after treatment , In this study , a light-duty diesel oxidation catalyst(DOC) that is one of the diesel exhaust after treatment was made for performance evaluation and the emission characteristics were tested on CVS-75 mode. And the analysis of the particle size distribution with scanning mobility particle 100, 67.6% and 66.7, 10.0% for Pt and Pt-V catalyst .And for Pt catalyst, the PM increased 7.8% because of increasing sulfate but Pt-V catalyst reduced the PM to 23.0% . Test results of particle size distribution showed that peak values of number and mass densities are respectively 100∼200nm their distribution trend independent of vehicle speed.

  • PDF

Study on self-pulsation characteristics of gas centered shear coaxial injector for supercavitating underwater propulsion system

  • Yoon, Jung-Soo;Chung, Jae-Mook;Yoon, Young-Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.286-292
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles for underwater propulsion system, basic experiments on gas-liquid shear coaxial injector are necessary. In the gas-liquid coaxial injector self-pulsation usually occurs with an intense scream. When self-pulsation occurs, mass flow rate oscillation and intense scream are detected by the interactions between the liquid and gas phase. Self-pulsation must be suppressed since this oscillation may cause combustion instabilities. Considerable research has been conducted on self-pulsation characteristics, but these researches are conducted in swirl coaxial injector. The main objective of this research is to understand the characteristics of self-pulsation in shear coaxial injector and reveal the mechanism of the phenomenon. Toward this object, self-pulsation frequency and spray patterns are measured by laser diagnostics and indirect photography. The self-pulsation characteristics of shear coaxial injector are studied with various injection conditions, such as the pressure drop of liquid and gas phase, and recess ratio. It was found that the frequency of the self-pulsation is proportional to the liquid and gas Reynolds number, and proportional to the L/d.

A Study on Synthesis of Functional Composite Latex and Characteristics of Thermal Decomposition (기능성 복합 라텍스의 합성과 열분해 특성에 관한 연구)

  • Kwon, Jae-Beom;Kim, Nam-Suk;Lee, Nae-Woo;Seul, Soo-Duck
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.47-53
    • /
    • 2004
  • Emulsion polymerization ws carried out using Alkyl methacrylate(RMA) like MMA, EMA, BMA and Styrene Monomer(SM) for core-shell latex preparation. It was synthesized at $80^{\circ}C$ in the presence of anionic surfactant SLS(Sodium Lauryl Sulfate). FT-IR and DSC analysis are used to confirm the synthesized core-shell emulsion latexes. Moreover DSC and TGA were used to investigate the thermal characterisitcs of them. The differences of the decomposition rate and the activation energy from TGA and DSC analysis are not so big. It considers that the pendent group is not affect of the thermal characteristics and stability on core-shell latexes, which is synthesized with RMA and Styrene. For investigating combustion products, LC50 values were calculated by FED(Fractional Effective Dose)from the Pyrolyzer-Mass sepctrometer.

Conceptual Design of Thrust Chamber for 7 tonf-class Liquid Rocket Engine (7톤급 액체로켓엔진 연소기 개념설계)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Joh, Mi-Ok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.454-456
    • /
    • 2012
  • Conceptual design results of a thrust chamber for a 7 tonf-class liquid rocket engine of KSLV-II 3rd stage were described. The engine system for KSLV-II 3rd stage is pump-fed system, the thrust chamber has vacuum thrust of 6.9 tonf, vacuum specific impulse of 336.9 sec, chamber pressure of 70 bar, nozzle expansion ratio of 94.5, total propellant mass flow rate of 20.5 kg/s, mixture ratio(O/F) of 2.45. The thrust chamber consists of mixing head with 90 coaxial swirl injectors and regeneratively combustion chamber cooled by kerosene.

  • PDF

A Study on Fuzzy Control Simulator of Naturally Circulated Boiler (자연 순환식보일러의 퍼지제어 모사기 개발에 관한 연구)

  • Kim, Kwang-Sun;Kim, Sam-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.543-554
    • /
    • 2000
  • The engineering equations, which have been used in many engineering companies, were employed for the dynamic modelling part in order to develop the naturally circulated boiler simulator. The fuzzy algorithm, which is similar to the algorithm of making decision by the human being, was developed for the boiler simulator controller and its simulated variables were compared with those of classical PID simulations to verify the stability and the effectiveness of fuzzy controller. The simulator is for the naturally circulated boiler and the main components are the furnace, the drum, the super heater, and the economizer. The combustion and thermal radiation dominant equations were used within the furnace and the mass conservation and the energy rate balance equations were employed for the drum part. The heat transfer rates were calculated using the logarithmic mean temperature differences both for the super heater and for the economizer. The simulations are very useful to understand the boiler operations and the engineering design of the main components. The main program was developed under the PC window condition by linking the fuzzy controller to the main boiler program using the Visual C++ language. The various operational conditions such as the abrupt changes of load, the changes of water supply pipes and the diameter of drum were simulated.

Study of Flow Discharging Characteristics of Injectors at Fuel Rich Conditions (연료 과농 환경에서 분사기 유량 통과 특성 연구)

  • Seo, Seong-Hyeon;Lim, Byoung-Jik;Kim, Mun-Ki;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.9-12
    • /
    • 2010
  • This paper discusses experimental data for the assessment of flow discharging characteristics of double swirl coaxial injectors operating at fuel-rich conditions. Combustion tests employing liquid oxygen and kerosene (Jet A-1) were conducted and a discharge coefficient was utilized for defining flow characteristics. A mass flow rate, a pressure, and a temperature were measured to estimate discharge coefficients. Fuel injectors revealed a fixed value of a discharge coefficient regardless of matched LOx injector design, chamber pressure, and mixture ratio. However, oxidizer injectors showed varying discharging coefficients depending on chamber pressure and mixture ratio. Flame structure variations seem to affect flow discharging characteristics of the oxidizer side.

  • PDF

Preliminary Design Plan for Determining Combustor Configuration of Regenerative-cooled Liquid Rocket Engine (재생냉각식 액체로켓엔진의 연소기 형상 결정을 위한 예비 설계 방안)

  • Son, Min;Seo, Min-Kyo;Koo, Ja-Ye;Cho, Won-Kook;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • A design plan was proposed for determining combustor configuration of regenerative- cooled liquid rocket engine in the process of preliminary design. Rocket performance and regenerative cooling results were calculated using the properties of combustion gas estimated in CEA. For required thrust, chamber pressure, atmosphere pressure and propellant mixture ratio the mass flow rate of propellants and combustor performance were predicted by one-dimensional and experimental correlations. Finally, determinable plan for the contour of combustor were presented through Rao nozzle design method.

Development of Small-scale Hybrid Rocket Motor using $PE-N_2O$ Propellants ($PE-N_2O$ 추진제를 이용한 소형 하이브리드 로켓 모터 개발)

  • Cho, Seung-Hyun;Park, Koo-Jeong;Cho, Jung-Tae;Kim, Jong-Chan;Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.370-373
    • /
    • 2007
  • In this study, a hybrid rocket motor with separable and detachable oxidizer tank from combustion chamber is developed. Initially, the measured thrust of the motor showed about 30% of the design thrust since the oxidizer supply was not enough. In order to solve this problem, application is made to expand the orifice diameter of oxidizer injector empirically, so that the mass flow rate of oxidizer was improved. The improved performance was about 60% of design thrust, 18kgf, and thrust-to-weight ratio was reasonable, compared with other sounding rockets.

  • PDF

Preliminary Design Plan for Determining Combustor Configuration of Regenerative-cooled Liquid Rocket Engine (재생냉각식 액체로켓엔진의 연소기 형상 결정을 위한 예비 설계 방안)

  • Son, Min;Seo, Min-Kyo;Koo, Ja-Ye;Cho, Won-Kook;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.37-42
    • /
    • 2010
  • A design plan was proposed for determining combustor configuration of regenerative- cooled liquid rocket engine in the process of preliminary design. Rocket performance and regenerative cooling results were calculated using the properties of combustion gas estimated in CEA. For required thrust, chamber pressure, atmosphere pressure and propellant mixture ratio the mass flow rate of propellants and combustor performance were predicted using one-dimensional and experimental equations. Finally, determinable plan for contour of combustor were presented through Rao nozzle design method.

  • PDF

Effects of the Ultrasonic Energy on the IDI Diesel Engine Performance (초음파에너지가 간접분사식 디젤기관 성능에 미치는 영향)

  • Lee, Byoung-Oh;Kim, Yong-Guk;Lee, Seung-Jin
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.169-174
    • /
    • 2009
  • In the study, the effect of the ultrasonic energy in transportational diesel fuel on the engine performance and exhaust emission has been investigated for indirect injection diesel engine. It was tested to estimated change of engine performance and exhaust emission characteristics for the transportational diesel fuels and the reforming fuels which was irradiated by the ultrasonic energy. The results of the study may be concluded as follows; By the irradiation of ultrasonic energy on the diesel fuel, cylinder pressure, heat release rate and engine power were increased but bsfc, mass fraction burned, and smoke were reduced. Also, the combustion was more stabilized and became complete and NOx was increased.