• 제목/요약/키워드: Rate of mass combustion

검색결과 337건 처리시간 0.027초

압축점화 가솔린기관의 성능 및 배기특성 (Performance and Emission Characteristics of Compression Ignition Gasoline Engine)

  • 김홍성;김문헌
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.1007-1014
    • /
    • 2003
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to 18$0^{\circ}C$ in the inlet air temperature. The compression ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. For example. the allowable lean limit of air-fuel ratio is extended until 63 at engine speed of 1000 rpm and inlet air temperature of 17$0^{\circ}C$. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

가솔린 엔진의 스로틀 밸브 출구에서 유동측정 (Flow Measurements at the Exit of a Throttle Valve in Gasoline Engines)

  • 김성초;김철;최종근;위화복
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.1-8
    • /
    • 2002
  • The flow and combustion patterns have been investigated inside the gasoline engine cylinder with the swirl or tumble flow, whereas the air flow characteristics, which are generated in the part of intake system before entering into the intake manifold, have not been known completely. It is necessary to analyze the flow field in the intake system consisting of air rater, throttle valve and intake manifold. The throttle valve, used to control the intake air flow rate, is important because it makes various mass flow rate and flow patterns. Three-dimen-sional How characteristics such as velocities, turbulent intensities and Reynolds shear stresses are measured by the hot wire anemometer at the exit of the throttle valve with the variation in the valve opening angle($15^{\circ}$, $45^{\circ}$, $75^{\circ}$ and $90^{\circ}$) and the Reynolds numbers (45000, 70000 and 140000). There are a lot of changes in flow characteristics at $75^{\circ}$ due to the large recirculation flow comparing with those of the other cases, and the streamwise velocity is especially enforced strongly below the valve shaft. The other component velocities are relatively large near the centerline parallel to the valve shaft. The effects of the Reynolds number on the flow field are not severe.

Numerical Study on NO Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho Eun-Seong;Chung Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1358-1365
    • /
    • 2005
  • Flue gas recirculation (FGR) is widely adopted to control NO emission in combustion systems. Recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance much improved reduction in NO per unit mass of recirculated gas, as compared to conventional FGR in air. In the present study, the effect of dilution methods in air and fuel sides on NO reduction has been investigated numerically by using $N_2$ and $CO_2$ as diluent gases to simulate flue gases. Counterflow diffusion flames were studied in conjunction with the laminar flamelet model of turbulent flames. Results showed that $CO_2$ dilution was more effective in NO reduction because of large temperature drop due to the larger specific heat of $CO_2$ compared to $N_2$. Fuel dilution was more effective in reducing NO emission than air dilution when the same recirculation ratio of dilution gas was used by the increase in the nozzle exit velocity, thereby the stretch rate, with dilution gas added to fuel side.

이차 연소를 위한 가스발생기의 압력 제어기법 연구 (Control law design of gas generator for secondary combustion)

  • 박익수;이재윤;최호진;윤현걸;임진식
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.565-568
    • /
    • 2010
  • 가스 발생기의 유량을 조절하기 위한 압력제어 법칙을 제안하였다. 고체 연료의 연소속도 모델과 가스발생기의 연소가스 보존방정식을 이용하여 내부 압력에 관한 동적 모델링을 하였고, 모델의 타당성을 검증하기 위하여 내탄도 해석 및 시험결과와 비교하였다. 비교 결과 모델은 연소압력을 매우 정확히 모의할 수 있는 모델임이 밝혀졌고, 같은 모델을 이용하여 고전 제어기법을 적용하여 제어 가능성과 문제점을 시뮬레이션을 통해 식별하였다. 고전 제어기가 보여준 시변 시스템에서의 성능저하를 극복하기 위하여 비선형 적응형 제어 기법을 제안하였으며, 수치 시뮬레이션 결과 우수한 추종 성능을 보였다.

  • PDF

하이브리드 로켓에서의 연료 표면 온도 측정에 관한 연구 (A Study for Measurement of the Fuel Surface Temperature in Hybrid Rocket)

  • 김학철;우경진;이정표;김기훈;조정태;김수종;문희장;성홍계;김진곤
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.237-240
    • /
    • 2009
  • 일반적으로 하이브리드 연소를 모델링 할 경우 고체 연료의 표면 온도를 이용하여 후퇴율을 계산하기 때문에 정확하게 고체연료의 표면온도를 예측하는 것이 필요하다. 따라서 본 연구는 하이브리드 고체 연료에 열전대를 삽입한 후, 연소실험을 통해 연료의 표면 온도를 측정하였고, 본 연구에서의 산화제 유속 범위에서의 고체 연료 표면 온도 변화를 고찰하였다.

  • PDF

1 ton/day 석탄가스화기를 이용한 Adaro 탄의 가스화 특성 실험 (The experimental study of 1 ton/day coal gasifier using Adaro coal)

  • 박세익;정재화;서혜경;이중원;주지선;지준화;김미영;김기태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.105.1-105.1
    • /
    • 2010
  • Korea Electric Power Research Institute (KEPRI) has developed a compact coal-gasification system to accumulate our experiment skills. The combustion furnace for residual oil was modified as a small size coal gasifier. Recently, coal feeding system was also upgraded to control coal feed rate more accurately. Our research group has conducted several experiments to find out the effect of $O_2$/coal ratio on the cold gas efficiency. Furthermore, the effect of $N_2$/coal ratio on the transport characteristics was also studied. According to the calculation of heat and mass balance, the cold gas efficiency was estimated to the maximum at $O_2$/coal ratio of around 0.73. But small size gasifier such as ours required higher value of $O_2$/coal ratio than that of the theoretical estimation. On the optimal $N_2$/coal ratio, we noticed that the coal feed rate was intimately related with the transporting gas pressure and the pipe diameter.

  • PDF

분사시기의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기특성 (Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Injection Timing)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.14-22
    • /
    • 2005
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

흡입공기온도의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기 특성 (Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Inlet-Air Temperature)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.19-24
    • /
    • 2006
  • This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel was injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector was water-cooled by a specially designed coolant passage. The engine performance and emission characteristics were investigated under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, 150 to $180^{\circ}C$ in the inlet-air temperature, and $60^{\circ}$ BTDC in the injection timing. The ultra lean-burn with self-ignition of gasoline fuel by heating inlet air was achieved in a controlled auto-ignition gasoline engine. It could be also achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide significantly reduced by CAI combustion compared with conventional spark ignition engines.

  • PDF

분할연소기의 화염 가시화 연구 (Flmae Visualization of the sector combustor)

  • 김보라미;최채홍;김춘택;최성만
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.213-216
    • /
    • 2009
  • 가스터빈 연소기의 화염 특성을 알기 위하여 분할 연소기 시험을 수행하였다. 점화시험은 여러 가지 연소기 유입 공기속도와 공기과잉율에 따라 토치 점화장치를 이용하여 수행되었다. 또한, 연료를 충분히 공급한 상태에서 점화를 수행한 후 점차 연료량을 감소시켜가며 희박연소한계를 측정 하였다. 실험 결과, 공기과잉율 6에서 안정한 점화를 보였고 이 값은 연소기 공기 유입속도에 따라 점점 증가함을 보였다. 최소 실화한계는 연소기 공기 유입속도 40 m/s에서 약 4였고, 이 값 또한 연소기공기유입속도에 따라 약 10 까지 증가함을 보였다.

  • PDF

터보과급 디젤기관의 과도운전시 응답성능에 관한 연구 (A Study on the Response Performances under Transient Operating Conditions in a Turlblocharged Diesel Engine)

  • 최낙정;이창식
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1575-1582
    • /
    • 1992
  • 본 연구에서는 정상운전 중인 4사이클 6실린더 터보과급 디젤기관에 갑자기 큰 부하가 작용하였을 경우, 기관 및 과급기 관성 모멘트의 변화가 기관과 과급기의 실제 회전속도, 압축기 압력비, 실린더내 공기유량, 연소효율, 배기온도 등의 과도 응 답성능에 미치는 영향을 시뮬레이션해석과 실험을 통하여 규명하였다.