• Title/Summary/Keyword: Rate of heat release

Search Result 663, Processing Time 0.025 seconds

The Study of Development and Calibration for the Real Scale Fire Test Facility (실대형화재평가장치의 개발 및 안정화에 관한 연구)

  • Yoo, Yong-Ho;Kim, Heung-Youl;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The reduced scale fire test provides basic data but it is not enough to analysis real fire problem directly because there is no exact analogy theory between a real fire and the reduced scale model. Therefore, we have developed the 10 MW large scale calorimeter in order to real scale fire test. This advanced large scale calorimeter used for physical properties such as a heat release rate, based upon consumption of $O_2$ method. Using the heptane pool fire, we carried out the calibration in order to evaluation for heat release rate. It is approve that this facility has the reliability and it is capable of applying to the advance fire research in the future.

Experimental Study on the Effect of Flow around Solid Combustibles and Thermal Thickness on Heat Release Rate Characteristics (고체 가연물 주위의 유동과 열적 두께의 변화가 열방출률 특성에 미치는 영향에 관한 실험적 연구)

  • Hong, Ter-Ki;Seo, Dong-Pyo;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.28-34
    • /
    • 2020
  • In this study, an ISO 5660-1 cone calorimeter experiment was conducted to examine the effects of changes in flow and thermal thickness around solid combustibles on heat release rate characteristics. Polymethyl methacrylate (PMMA) is a solid combustible material that does not generate char during the combustion reaction. Hence, it was selected for the experiment, and the thermal penetration depth was calculated to distinguish the thermal thickness of PMMA. Furthermore, the thermal decomposition characteristics were analyzed by measuring the heat release rate measured during the combustion of PMMA. This was performed after generating the forced flow around the combustibles by setting the duct flow of the cone calorimeter to 12, 24, and 40 L/s. The results confirmed that the thermal release rate of the thermally thin combustible material was not significantly affected by the change in the surrounding flow. Hence, the thermally thick combustible material was significantly affected by the change in the flow rate.

An Experimental Study on the Determination of Backlayering Distance in Tunnel Fires (터널 화재시 역기류의 위치 결정에 관한 실험적 연구)

  • 이성룡;유홍선
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.269-274
    • /
    • 2004
  • In this study reduced-scale experiments were conducted to determine the backlayering distance in tunnel fires. The 1/20 scale experiments were carried out under the Froude scaling using ethanol square pool fire ranging from 8 to 1km in each side with total heat release rate from 2.47 to 12.30 ㎾. It has been found that ventilation velocity increases with aspect ratio(tunnel height/tunnel width). At L$\_$B/$\^$*/ <5 the ventilation velocity increases proportional to the backlayering distance from 0.25 power of the heat release rate. However at L$\_$B/$\^$*/ $\geq$5 the ventilation velocity varies as the 0.3 power of the heat release rate.

A Study on Fire Characteristics of Solid Combustible Materials Based on Real Scale Fire Test (실규모 실험에 의한 고체가연물의 화재특성 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.62-68
    • /
    • 2011
  • A series of fire tests involving realistic solid combustible materials was conducted to quantify the heat release rate and investigate the fire growth characteristics during the initial fire growth stage. For these tests, single/double wood cribs, urethane cushion having polypropylene covers and wood crib on nylon carpet with urethane carpet padding were used as a fuel source. The fire growth coefficient of the solid combustible materials was quantified and the fire growth characteristics were compared with the $t^2$ fire scenario. The mean effective heat of combustion was evaluated by the total mass loss of fuel and total energy release concept and examined the effect of the ventilation and fire condition. The present study provides the practical information on the fire growth characteristics of solid combustible material to design to a set of fire scenarios for the fire risk analysis.

Effect of inlet air humidity on the combustion process of the spark-ignition engine (흡입습도가 스파아크 점화기관의 연소과정에 미치는 영향)

  • 김문헌;이성열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.41-47
    • /
    • 1983
  • The analysis shows that the variation of maximum pressure of the cycle, rate of hear release, rate of mass burned, and combustion delay are influenced by the inlet air humidity in the spark-ignition engine. The quantitative combustion delay can be obtained from the rate of mass burned. Also, the variation of time loss and effective compression ratio with the change of inlet air humidity are dominated by the development of rate of heat release.

  • PDF

Combustive Characteristics of Pinus Rigida Treated with Ammonium Salts (암모늄염으로 처리된 리기다 소나무의 연소특성)

  • Chung, Yeong-Jin;Jin, Eui
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.115-121
    • /
    • 2010
  • This study was performed to test the combustive properties of Pinus rigida-based materials by the treatment of ammonium salts. Pinus rigida plate was soaked in three 20 wt% ammonium salt solutions such as ammonium sulfate (AMSF), monoammonium phosphate (MAPP), and diammonium phosphate (DAPP), respectively, at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). Comparing with virgin pinus rigida plate, specimens treated with the ammonium salts had lower combustive properties and It is supposed that the combustion-retardation properties improved due to the treated ammonium salts in the virgin Pinus rigida. Also, the specimens with treated ammonium salts showed both the lower peak heat release rate (PHRR) and lower total heat release (THR) than those of virgin plate.

A Study on the Heat Release Characteristic of Household Items using LSC(Large Scale Cone Calorimeter) (LSC를 이용한 생활용품의 발열량 특성에 관한 연구)

  • Park, Ju Young;Baek, Chang Sun;Lee, Hae Pyeong;Hong, Yi Pyo
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.38-44
    • /
    • 2015
  • For this study, fire tests were performed targeting household items (Sofa, Drawer, Refrigerator, Washing machine) using a large cone calorimeter (Large Scale Cone Calorimeter, LSC). The data were obtained focusing on the fire characteristic of the data when the actual fire occurs. The study results showed the following mean HRR of the household items; drawer 2843 KW, sofa 2939 KW, washing machine 719 KW, refrigerator 2907 KW, and THR is found in sofa 2202 MJ, drawer 1559 MJ, refrigerator 1193 MJ, washing machine 627 MJ. From the result, it could be found that the sofa can cause significant heat generation when the fire occurs, and the flashover tendency was found relatively high in compartment fire. In addition, a weight of the four our household items was reduced sharply in a similar time (20min before and after) degree after ignition. The drawer and sofa which has a high heat release can be considered to speed up the fire spread as their weight decrease rapidly and showed relatively weak to the fire compared to the refrigerator and washing machine.

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

A Study on Combustion Characteristics of the High Pressure Diesel Engine in Closed Cycle System (폐회로 시스템에서 고압 디젤엔진의 연소특성에 관한 연구)

  • 김인교;박신배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.457-463
    • /
    • 2002
  • The closed cycle diesel engine is used in a closed circuit system which has no air breathing. The working fluid as intake mixture are consisted of oxygen, argon and recirculated exhaust gas in order to obtain underwater or underground power sources. In the present study, the high pressure diesel engine which can be operated by the closed cycle system with high intake pressure for increasing the net power rate is designed. It has been carried out to investigate the combustion characteristics of high pressure diesel engine according to the power rate. The maximum cylinder pressure and heat release rate were investigated. Also, major experimental data such as specific fuel consumption rate, oxygen concentrations, fuel conversion efficiency, polytropic exponent, and IMEP were compared with low pressure diesel engine experimental data.

A Study on the Burning Characteristics of Interior Boards and Louvers (내장용 판재 및 루버의 연소발열특성 연구)

  • Nam, Dong-Gun;Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.28 no.2
    • /
    • pp.34-39
    • /
    • 2014
  • It is necessary to enhance its availability and reliability of performance based fire design of building with various type of database such as experiments, survey and fire properties and so on. In order to utilize to the performance based fire design, the present study has been performed a series of experiments to investigate the burning characteristics of building materials for two types of interior board and three types of interior louver. The burning test has been also conducted for different thickness because it may show different characteristics of burning behavior such as flame spread rate and flame propagation time. The result shows that the effective heat release per unit mass of interior materials were almost constant with 15.3~16.9 MJ/kg regardless of its thickness while the peak heat release rate and maximum $CO_2$ concentration was varied with thickness.