• Title/Summary/Keyword: Rate function

Search Result 6,595, Processing Time 0.031 seconds

Receptor Specificity of Adenosine Analogs in Terms of Renal Function and Renin Release (Adenosine 유사체의 신장효과에 미치는 Adenosine 차단제의 영향)

  • Yun, Young-Yi;Koh, Gou-Young;Kim, Suhn-Hee;Cho, Kyung-Woo
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.269-280
    • /
    • 1990
  • The purpose of the present experiment was to determine the functional subclassification of renal adenosine receptor fer the hemdynamic, excretory and secretory functions in unanesthetized rabbits. Adenosine antagonist, 8-phenyltheophylline (8-PT) or theophylline, was infused into the left renal artery followed by an infusion of adenosine agonist, cyclohexyladenosine (CHA) or 5'-N-ethylcarboxamidoadenosine (NECA). Intrarenal arterial infusion of CHA or NECA caused decreases in urine volume, glomerular filtration rate, renal plasma flow and excreted amount of electrolytes and renin release in a dose-dependent manner. Dose-response curves in renal function by CHA or NECA was similar and shifted to the right with pretreatment of 8-PT or theophylline. No significant differences in renal response to CHA and NECA in antagonist-treated rabbits were observed. However, the decrease in renin secretion rate was not affected by the adminstration of adenosine antagonists. These results suggest that the renal effect of adenosine receptor agonists appears by way of specific adenosine receptor, but which is not functionally subclassified in the rabbit.

  • PDF

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.

A Study on the Optical Filters Bandwidth with Error Probability in Preamplifier System (전치증폭시스템에서 에러확률에 따른 광 필터의 대역폭에 관한 연구)

  • Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3642-3646
    • /
    • 2012
  • In this paper, the bandwidth of the filters used in optical communication systems and systems for the correlation between the error probability has been studied. Preamplifier that occurs in the system error probability as a function of the sensitivity of the receiver on the receiver sensitivity was shown for the various error probability calculation is performed. In addition, the channel data rate on the probability of various errors, changes in the function of the optimal bandwidth for the receiver filter was calculated, as required to operate at optimal range of the filter bandwidth, data rate per channel in a 10Gb/s the range of when is between 0.2 and 3.5nm.

Deterministic Function Variable Step Size LMS Algorithm (결정함수 가변스텝 LMS 알고리즘)

  • Woo, Hong-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.128-132
    • /
    • 2011
  • Least mean square adaptive algorithms have played important role in radar, sonar, speech processing, and mobile communication. In mobile communication area, the convergence rate of a LMS algorithm is quite important. However, LMS algorithms have slow and non-uniform convergence rate problem For overcoming these shortcomings, various variable step LMS adaptive algorithms have been studied in recent years. Most of these recent LMS algorithms have used complex variable step methods to get a rapid convergence. But complex variable step methods need a high computational complexity. Therefore, the main merits such as the simplicity and the robustness in a LMS algorithm can be eroded. The proposed deterministic variable step LMS algorithm is based upon a simple deterministic function for the step update so that the simplicity of the proposed algorithm is obtained and the fast convergence is still maintainable.

A study on the fault detection efficiency of software (소프트웨어의 결함 검출 효과에 관한 연구)

  • Kim, Sun-Il;Che, Gyu-Shik;Jo, In-June
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.737-743
    • /
    • 2008
  • I compare my parameter estimation methodoloay with existing method, considering both of testing effort and fault detecting rate simultaneously in software reliability modeling. Generally speaking, fault detection/removal mechanism depends on how apply previous fault detection/removal and testing effort of S/W. The fault removal efficiency makes large influence to the reliability growth, testing and removal cost in developing stage S/W. This is very useful measure during all the developing stages and much helpful for the developer to estimate debugging efficiency, and furthermore, to anticipate additional working amount.

A Study on the Sensitivity of Self-Powered Neutron Detectors(SPNDs) and a new Proposal

  • Lee, Wanno;Gyuseong Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.445-450
    • /
    • 1997
  • Self-Powered Neutron Detectors(SPNDs) are currently used to estimate the power generation distribution and fuel burn-up in several nuclear power reactors in Korea. In this paper, Monte Carlo simulation is accomplished to calculate the escape probability of beta particle as a function of their birth position fur the typical geometry of rhodium-based SPNDs. Also, a simple numerical method calculates the initial generation rate of beta particles and the change of generation rate due to rhodium burn-up. Using the simulation and the numerical method, the burn-up profile of rhodium density and the neutron sensitivity are calculated as a function of burn-up time in the reactor. The sensitivity of the SPNDs decreases non-linearly due to the high absorption cross-section and the non-uniform burn-up of rhodium in the emitter rod. In addition, for improvement of some properties of rhodium-based SPNDs which are currently used, this paper presents a new material. The method used here can be applied to the analysis of other types of SPNDs and will be useful in the optimum design of new SPNDs for long term usage.

  • PDF

Optimizing Design Problem in an Automotive Body Assembly Line Considering Cost Factors (비용요소를 고려한 자동차 차체조립라인의 설계 최적화)

  • Lee, Young Hoon;Kim, Dong Ok;Baek, Gyeong Min;Shin, Yang Woo;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.95-109
    • /
    • 2020
  • In this paper, an optimal manufacturing system design problem in an automotive body assembly lines is introduced when various costs such as equipment investment costs are considered. Meta-model methodology based on simulation results has been used for estimating the performances of the system such as production rate and work-in-process levels. The objective function is minimizing total cost which satisfies the target production rate. The investment costs such as robots, buffers, transportation equipment, and the inventory holding cost of work-in-process have been included in the objective function. Harmony search method has been used for optimization.

Numerical modeling of concrete conveying capacity of screw conveyor based on DEM

  • Yu, Wenda;Zhang, Ke;Li, Dong;Zou, Defang;Zhang, Shiying
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.361-374
    • /
    • 2022
  • On the premise of ensuring that the automatic and quantitative discharging function of concrete conveyors is met, the accuracy of the weight forecast by the mathematical model of the screw conveying volume is improved, and the error of the weight of the concrete parts and the accumulation thickness is reduced. In this paper, the discrete element method (DEM) is used to simulate the macroscopic flow of concrete. Using the concrete discrete element model, the size of the screw conveyor is set, and establish the response model between the influencing factors (process and structure) and the concrete mass flow rate according to the design points of the screw discharging experiment. The nonlinear data fitting method is used to obtain the volumetric efficiency function under the influence of process and structural factors, and the traditional screw conveying volume model is improved. The mass flow rate of concrete predicted by the improved mathematical model of screw conveying volume is consistent with the test results. The model can accurately describe the conveying process of concrete and achieve the purpose of improving the accuracy of forecasting the weight of discharged concrete.

Preventive Policy With Minor Failure Under Age and Periodic Replacement (경미한 고장을 수반하는 시스템에 대한 노화 및 예방적 교체 정책)

  • Lee, Jinpyo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.78-89
    • /
    • 2022
  • The purpose of this study was to propose useful suggestion by analyzing preventive replacement policy under which there are minor and major failure. Here, major failure is defined as the failure of system which causes the system to stop working, however, the minor failure is defined as the situation in which the system is working but there exists inconvenience for the user to experience the degradation of performance. For this purpose, we formulated an expected cost rate as a function of periodic replacement time and the number of system update cycles. Then, using the probability and differentiation theory, we analyzed the cost rate function to find the optimal points for periodic replacement time and the number of system update cycles. Also, we present a numerical example to show how to apply our model to the real and practical situation in which even under the minor failure, the user of system is not willing to replace or repair the system immediately, instead he/she is willing to defer the repair or replacement until the periodic or preventive replacement time. Optimal preventive replacement timing using two variables, which are periodic replacement time and the number of system update cycles, is provided and the effects of those variables on the cost are analyzed.

Steady-State and Transient Response Analysis of DSSC Based on Electron Diffusion Coefficient and Chemical Capacitance

  • J. C. Gallegos;J. Manriquez;R. Rodriguez;S. Vargas;D. Rangel
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.276-290
    • /
    • 2024
  • A study of the transition from transitory state to steady state in DSSCs based on natural dyes is presented; cochineal was used as dye and Li+, Na+, and K+ were the ions added to the electrolyte. The photocurrent profiles were obtained as a function of time. Several DSSCs were prepared with different cations and their role and the transitory-to-steady transition was determined. A novel hybrid charge carrier source model based on the Heaviside function H(t) and the Lambert-Beer law, was developed and applied to analysis of the transient response of the output photocurrent. Additionally, the maximum effective light absorption coefficient α and the electronic extraction rate κ for each ion were determined: ${\alpha}_{Li^+,Na^+,K^+}\,=\,(0.486,\,0.00085,\,0.1126)\,cm^{-1}$, and also the electronic extraction rate ${\kappa}^{Li^+,Na^+,K^+}_{ext.}\,=\,(1410,\,19.07,\,19.69)\,cm\,s^{-1}$. The impedance model using Fick's second law was developed for carrier recombination to characterize the photocurrent.