• Title/Summary/Keyword: Rate constraints

Search Result 522, Processing Time 0.031 seconds

Optimization of Design of Plasma Process for Water Treatment using Response Surface Method (반응표면분석법을 이용한 수처리용 플라즈마 공정 설계의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.617-624
    • /
    • 2011
  • In order to confirm the creation of the OH radical which influences to RNO bleaching processes, it experimented using laboratory reactor of dielectric barrier discharge plasma (DBDP). The experiments performed in about 4 kind process variables (diameter of ground electrode, diameter of discharge electrode, diameter of quartz tube and effect of air flow rate) which influence to process. In order to examine optimum conditions of design factors as shown in Box-Behnken experiment design, ANOVA analysis was conducted against four factors. The actual RNO removal at optimized conditions under real design constraints were obtained, confirming Box-Behnken results. Optimized conditions under real design constraints were obtained for the highest desirability at 1, 1 mm diameter of ground and discharge electrode, 6 mm diameter of quartz tube and 5.05 L/min air flow rate, respectively.

QoS Constrained Optimization of Cell Association and Resource Allocation for Load Balancing in Downlink Heterogeneous Cellular Networks

  • Su, Gongchao;Chen, Bin;Lin, Xiaohui;Wang, Hui;Li, Lemin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1569-1586
    • /
    • 2015
  • This paper considers the optimal cell association and resource allocation for load balancing in a heterogeneous cellular network subject to user's quality-of-service (QoS) constraints. We adopt the proportional fairness (PF) utility maximization formulation which also accommodates the QoS constraints in terms of minimum rate requirements. With equal resource allocation this joint optimization problem is either infeasible or requires relaxation that yields a solution which is difficult to implement. Nevertheless, we show that this joint optimization problem can be effectively solved without any priori assumption on resource allocation and yields a cell association scheme which enforces single BS association for each user. We re-formulated the joint optimization problem as a network-wide resource allocation problem with cardinality constraints. A reweighted heuristic l1-norm regularization method is used to obtain a sparse solution to the re-formulated problem. The cell association scheme is then derived from the sparsity pattern of the solution, which guarantees a single BS association for each user. Compared with the previously proposed method based on equal resource allocation, the proposed framework results in a feasible cell association scheme and yields a robust solution on resource allocation that satisfies the QoS constraints. Our simulations illustrate the impact of user's minimum rate requirements on cell association and demonstrate that the proposed approach achieves load balancing and enforces single BS association for users.

Circuit-Switched “Network Capacity” under QoS Constraints

  • Wieselthier, Jeffrey E.;Nguyen, Gam D.;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.230-245
    • /
    • 2002
  • Usually the network-throughput maximization problem for constant-bit-rate (CBR) circuit-switched traffic is posed for a fixed offered load profile. Then choices of routes and of admission control policies are sought to achieve maximum throughput (usually under QoS constraints). However, similarly to the notion of channel “capacity,” it is also of interest to determine the “network capacity;” i.e., for a given network we would like to know the maximum throughput it can deliver (again subject to specified QoS constraints) if the appropriate traffic load is supplied. Thus, in addition to determining routes and admission controls, we would like to specify the vector of offered loads between each source/destination pair that “achieves capacity.” Since the combined problem of choosing all three parameters (i.e., offered load, admission control, and routing) is too complex to address, we consider here only the optimal determination of offered load for given routing and admission control policies. We provide an off-line algorithm, which is based on Lagrangian techniques that perform robustly in this rigorously formulated nonlinear optimization problem with nonlinear constraints. We demonstrate that significant improvement is obtained, as compared with simple uniform loading schemes, and that fairness mechanisms can be incorporated with little loss in overall throughput.

Cosmological constraints using BAO - From spectroscopic to photometric catalogues

  • Sridhar, Srivatsan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2019
  • Measurement of the location of the baryon acoustic oscillation (BAO) feature in the clustering of galaxies has proven to be a robust and precise method to measure the expansion of the Universe. The best constraints so far have been provided from spectroscopic surveys because the errors on the redshift obtained from spectroscopy are minimal. This in turn means that the errors along the line-of-sight are reduced and so one can expect constraints on both angular diameter distance $D_A$ and expansion rate $H^{-1}$. But, future surveys will probe a larger part of the sky and go to deeper redshifts, which correspond to more number of galaxies. Analysing each galaxy using spectroscopy, which is a time consuming task, will not be practically possible. So, photometry will be the most convenient way to measure redshifts for future surveys such as LSST, Euclid, etc. The advantage of photometry is measuring the redshift of vast number of galaxies in a single exposure, but the disadvantage are the errors associated with the measured redshifts. Using a wedge approach, wherein the clustering is split into different wedges along the line-of-sight ${\pi}$ and across the line-of-sight ${\sigma}$, we show that the BAO information can be recovered even for photometric catalogues with errors along the line-of-sight. This means that we can get cosmological distance constraints even if we don't have spectroscopic information.

  • PDF

A New Resource Allocation with Rate Proportionality Constraints in OFDMA Systems (OFDMA 시스템에서 비율적 전송률 분배를 위한 자원 할당)

  • Han, Seung-Youp;Oh, Eun-Sung;Han, Myeong-Su;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • In this paper, a new adaptive resource allocation scheme is proposed in orthogonal frequency-division multiple access(OFDMA) systems with rate proportionality constraints. The problem of maximizing the overall system capacity with constraints on bit error rate, total transmission power and rate-proportionality for user requiring different classes of service is formulated. Since the optimal solution to the constrained fairness problem is extremely complex to obtain, a low-complexity suboptimal algorithm that separates subchannel allocation and power allocation is proposed. Firstly, the number of subchannels to be assigned to each user is determined based on the users' average signal-to-noise ratio and rate-proportion. Subchannels are subsequently distributed according to the modified max-min criterion. Lastly, based on the subchannel allocation, the optimal power allocation by solving the Language dual problem is proposed. Additionally, in order to reduce the computational complexity, iterative rate proportionality tracking algorithm is proposed for maximizing the capacity together with maintaining the rate proportionality constraint.

A Robust Non-Speech Rejection Algorithm

  • Ahn, Young-Mok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.10-13
    • /
    • 1998
  • We propose a robust non-speech rejection algorithm using the three types of pitch-related parameters. The robust non-speech rejection algorithm utilizes three kinds of pitch parameters : (1) pitch range, (2) difference of the successive pitch range, and (3) the number of successive pitches satisfying constraints related with the previous two parameters. The acceptance rate of the speech commands was 95% for -2.8dB signal-to-noise ratio (SNR) speech database that consisted of 2440 utterances. The rejection rate of the non-speech sounds was 100% while the acceptance rate of the speech commands was 97% in an office environment.

  • PDF

Optimal Machine Operation Planning under Time-based Electricity Rates (시간대별 차등 전기요금을 고려한 최소비용 장비운용계획)

  • Kim, Inho;Ok, Changsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.63-71
    • /
    • 2014
  • As power consumption increases, more power utilities are required to satisfy the demand and consequently results in tremendous cost to build the utilities. Another issue in construction of power utilities to meet the peak demand is an inefficiency caused by surplus power during non-peak time. Therefore, most power company considers power demand management with time-based electricity rate policy which applies different rate over time. This paper considers an optimal machine operation problem under the time-based electricity rates. In TOC (Theory of Constraints), the production capacities of all machines are limited to one of the bottleneck machine to minimize the WIP (work in process). In the situation, other machines except the bottleneck are able to stop their operations without any throughput loss of the whole manufacturing line for saving power utility cost. To consider this problem three integer programming models are introduced. The three models include (1) line shutdown, (2) block shutdown, and (3) individual machine shutdown. We demonstrate the effectiveness of the proposed IP models through diverse experiments, by comparing with a TOC-based machine operation planning considered as a current model.

Asymmetric Joint Scheduling and Rate Control under Reliability Constraints in Cognitive Radio Networks (전파인지 네트워크에서 신뢰성 보장 비대칭 스케줄-데이터율 결합제어)

  • Nguyen, Hung Khanh;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.7
    • /
    • pp.23-31
    • /
    • 2012
  • Resource allocation, such as joint rate control and scheduling, is an important issue in cognitive radio networks. However, it is difficult to jointly consider the rate control and scheduling problem due to the stochastic behavior of channel availability in cognitive radio networks. In this paper, we propose an asymmetric joint rate control and scheduling technique under reliability constraints in cognitive radio networks. The joint rate control and scheduling problem is formulated as a convex optimization problem and substantially decomposed into several sub-problems using a dual decomposition method. An algorithm for secondary users to locally update their rate that maximizes the utility of the overall system is also proposed. The results of simulations revealed that the proposed algorithm converges to a globally optimal solution.

Optimal Feedback Control of Available Bit Rate Traffic in ATM using Receding Horizon Control

  • Shin, Soo-Young;Kwon, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.133-136
    • /
    • 2001
  • In this work, the problem of regulating and tracking available bit rate (ABR) traffic in ATM network. The issue of providing control signals to throttled sources at distant location from bottlenecked node is of particular interest. Network modeling and design of controller is outlined. To obtain optimal control, receding horizon control (RHC) theory is applied. Simulation results are presented in views of regulation and tracking problems with or without constraints.

  • PDF

A Comparative Analysis of Path Planning and Tracking Performance According to the Consideration of Vehicle's Constraints in Automated Parking Situations (자율주차 상황에서 차량 구속 조건 고려에 따른 경로 계획 및 추종 성능의 비교 분석)

  • Kim, Minsoo;Ahn, Joonwoo;Kim, Minsung;Shin, Minyong;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.250-259
    • /
    • 2021
  • Path planning is one of the important technologies for automated parking. It requires to plan a collision-free path considering the vehicle's kinematic constraints such as minimum turning radius or steering velocity. In a complex parking lot, Rapidly-exploring Random Tree* (RRT*) can be used for planning a parking path, and Reeds-Shepp or Hybrid Curvature can be applied as a tree-extension method to consider the vehicle's constraints. In this case, each of these methods may affect the computation time of planning the parking path, path-tracking error, and parking success rate. Therefore, in this study, we conduct comparative analysis of two tree-extension functions: Reeds-Shepp (RS) and Hybrid Curvature (HC), and show that HC is a more appropriate tree-extension function for parking path planning. The differences between the two functions are introduced, and their performances are compared by applying them with RRT*. They are tested at various parking scenarios in simulation, and their advantages and disadvantages are discussed by computation time, cross-track error while tracking the path, parking success rate, and alignment error at the target parking spot. These results show that HC generates the parking path that an autonomous vehicle can track without collisions and HC allows the vehicle to park with lower alignment error than those of RS.