• Title/Summary/Keyword: Rate Determining Step

Search Result 232, Processing Time 0.029 seconds

Influence of Solvents on Rates of Reactions of 2,4-Dinitro Substituted Halobenzenes with Substituted Anilines (Ⅱ) (2,4-이니트로할로벤젠과 치환된 아닐린의 반응속도에 대한 용매효과 (제2보))

  • Hai Whang Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 1978
  • The reactions of 2,4-dinitroiodobenzene with para subtituted anilines in acetonitrile-methanol binary solvent mixtures have been studied. Rate constants for reactions in methanol rich solvents are greater than for reactions in acetonitrile rich solvents. Kinetic results show that the bond formation step is rate determining in the solvent system studied. The solvent effect can be explained by stabilization of the transition state by formation of hydrogen bond between oxygen atom of methanol and hydrogen atom of aniline.

  • PDF

Effects of Added Anions on the Reaction of Nitrous Acid with Hydrogen Peroxide

  • Park, Jong-Yoon;Choi, Eun-Jin;Park, Joon-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.37-41
    • /
    • 1992
  • The reactions of nitrous acid with hydrogen peroxide in acidic aqueous solution in the presence of several added anions have been studied at $0^{\circ}C$ and pH 2-4 to investigate the nucleophilic catalysis of these anions. From the dependence of reaction rates on the anion concentrations, significant catalytic effects were found for $Cl^-,\;Br^-,\;SCN^-$, in order of effect $SCN^-\;{\approx}\;Br^->Cl^-$, while no observable effect was found for ${ClO_4}^-$ and ${NO_3}^-$. These results support O-nitrosation reaction is the rate-determining step and NOX formed in the presence of an anion ($X^-$) also acts as a nitrosating agent and accelerates the overall reaction rate. The order of reactivity was found to be NOCl>NOBr>NOSCN, which is consistent with the results of N-nitrosation and S-nitrosation reactions.

A Mechanistic Study on Acyl Transfer Reactions of Aryl Substituted Benzoates Between Aryloxides

  • Ik-Hwan Um;Jae-Shin Jeon;Dong-Sook Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.406-410
    • /
    • 1991
  • Second order rate constants have been measured spectrophotometrically for reactions of 4-nitrophenyl substituted benzoates with various aryloxides and aryl benzoates with p-chlorophenoxide. The reactivity has exhibited significant dependences on the electronic nature of the substituent in the acyl moiety of the substrate and in the nucleophilic phenoxide, while the substituent in the leaving phenoxide has little influenced the reactivity. The Bronsted coefficient $\beta$ values so obtiained support that the present acyl transfer reaction proceeds via a stepwise mechanism in which the nucleophilic attack would be the rate-determining step. Interestingly, the magnitude of the $\betaacyl$ and $\beta$ nuc increases with increasing reactivity, implying that the reactivity selectivity principle is not operative in the present system. The failure of the reactivity selectivity principle is attributed to a change in transition state structure upon the substituent variation in the present acyl transfer reaction.

Theoretical Studies on the A2 Hydrolysis of Methyl Acetimidate

  • Ikchoon Lee;Chang Kon Kim;Bon-Su Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.194-200
    • /
    • 1990
  • Various mechanistic aspects of the A2 hydrolysis of methyl acetimidate were explored using the MNDO method. As in thecorresponding reactions of acetamide and methyl carbamate, a proton transfer pre-equilibrium exists between the N-protonated and the O-protonated tautomers, and the subsequent hydrolysis proceeds from the more stable N-protonated form. Of the two reaction pathways, the $A_{AL}2$ path is favored in the gas phase and in concentrated acid solutions, whereas the $A_{AC}2$ path is favored in less acidic solutions with a stable cationic tetrahedral intermediate formed in the rate determining step. Negative charge development on the alkoxy oxygen in the transition state suggested a rate increase with the increase in the electron withdrawing power of the alkoxy group. Calculations on the reaction processes with AM1 indicated that MNDO is more reliable in this type of work, although AM1 is better than MNDO in reproducing hydrogen bonds.

Enhancement of Density and Piezoelectric Properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 Lead-Free Piezoelectric Ceramics through Two-Step Sintering Method (Two-Step 소결법을 통한 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 무연 압전 세라믹의 밀도 및 압전 특성 향상)

  • Il-Ryeol Yoo;Sang-Hyun Park;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.116-124
    • /
    • 2024
  • In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 ℃. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 ℃ (one-step 1,100 ℃ specimen). However, for one-step 1,115 ℃ specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 ℃ specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 ℃ specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and two-step specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 ℃ specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.

Application of High-performance Jet Loop Reactor for the Decolorization of Reactive black 5 and Mineralization of Oxalic Acid by Ozone (색도물질과 옥살산의 오존분해를 위한 고효율 Jet Loop 반응기의 적용)

  • Byun, Seok-jong;Geissen, Sven-Uwe;Vogelpohl, Aflons;Cho, Soon-haing;Yoon, Je-yong;Kim, Soo-Myung
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.78-85
    • /
    • 2004
  • As an ozone contactor, we newly adopted HJLR (High-performance Jet Loop Reactor) for the decolorization of Reactive black 5 and the mineralization of oxalic acid, which has been applied exclusively in biological wastewater treatments and well-known for high oxygen transfer characteristics. The ozonation efficiency for organic removals and ozone utilization depending on the mass transfer rate were compared to those of Stirred bubble column reactor, which was controlled by varing energy input in the HJLR and Stirred bubble column reactor. The results were as follows; first, the decolorization rate of Reactive black 5 in the HJLR reactor was nearly proportional to the increasing $k_La$. When the $k_La$ was increased by 25 % from $13.0hr^{-1}$ to $16.4hr^{-1}$, 30 % of the k' (apparent reaction rate constant) was increased from 0.1966 to $0.2665min^{-1}$ (Stirred bubble column; from 0.1790 to $0.2564min^{-1}$). Ozone transfer was found to be a rate-determining step in decolorizing Reactive black 5, which was supported by that no residual ozone was detected in all of the experiments. Second, the mineralization of oxalic acid was not always proportional to the increasing $k_La$ in the RJLR reactor. The rate-determining step for this reaction was OH(OH radical) production with ozone transfer, because residual ozone was always detected during the ozonation of oxalic acid in contrast with Reactive black 5. This result indicates that the increase of $k_La$ in the HJLR reactor is beneficial only when there are in ozone transfer limited regions. In addition, regardless of $k_La$, the mineralization of oxalic acid was nearly accomplished within 60 minutes. It was interpreted as that the longer staying of residual ozone by whirling liquid in the HJLR reactor contributed to an high ozone utilization(83-94%), producing more OR radicals.

Kinetic Study of the Fischer-Tropsch Synthesis and Water Gas Shift Reactions over a Precipitated Iron Catalyst (철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 속도 연구)

  • Yang, Jung-Il;Chun, Dong Hyun;Park, Ji Chan;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.358-364
    • /
    • 2012
  • The kinetics of the Fischer-Tropsch synthesis and water gas shift reactions over a precipitated iron catalyst were studied in a 5 channel fixed-bed reactor. Experimental conditions were changed as follows: synthesis gas $H_2$/CO feed ratios of 0.5~2, reactants flow rate of 60~80 ml/min, and reaction temperature of $255{\sim}275^{\circ}C$ at a constant pressure of 1.5 MPa. The reaction rate of Fischer-Tropsch synthesis was calculated from Eley-Rideal mechanism in which the rate-determining step was the formation of the monomer species (methylene) by hydrogenation of associatively adsorbed CO. Whereas water gas shift reaction rate was determined by the formation of a formate intermediate species as the rate-determining step. As a result, the reaction rates of Fischer-Tropsch synthesis for the hydrocarbon formation and water gas shift for the $CO_2$ production were in good agreement with the experimental values, respectively. Therefore, the reaction rates ($r_{FT}$, $r_{WGS}$, $-r_{CO}$) derived from the reaction mechanisms showed good agreement both with experimental values and with some kinetic models from literature.

Kinetics of the KOH Catalyzed-Methanolysis for Biodiesel Production from Fat of Tra Catfish

  • Huong, Le Thi Thanh;Tan, Phan Minh;Hoa, Tran Thi Viet;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.418-428
    • /
    • 2008
  • Transesterification of fat of Tra catfish with methanol in the presence of the KOH catalyst yields fatty acid methyl esters (FAME) and glycerol (GL). The effects of the reaction temperature and reaction time on rate constants and kinetic order were investigated. Three regions were observed. In the initial stage, the immiscibility of the Tra fat and methanol limited the reaction rate, hence this region was controlled by the mass transfer. Subsequent to this region, produced FAME like a co-solvent made the reaction mixture homogeneous, therefore the conversion rate increased rapidly so it was controlled by the kinetic parameters of the reaction until the equilibrium was approached in the final slow region. A second-order kinetic mechanism was proposed involving second regions for the forward reaction. The rate determining step for the overall KOH catalyzed-methanolysis of Tra fat was the conversion of triglycerides (TG) to diglycerides (DG). This rate constant was increased from 0.003 to $0.019min^{-1}$ when the reaction temperature was increased from 35 to $60^{\circ}C$. Its calculated activation energy was 14.379 ($kcal.mol^{-1}$).

A Study on the Decomposition Rate of Phenol in the Batch Type Ozonation (회분식 오존 공정에서 페놀의 분해 속도에 관한 연구)

  • 안재동;강동수
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.127-132
    • /
    • 1997
  • The characteristics of the ozone treatments of phenol were studied in a laboratory scale wastewater treatment system. The ozone treatment of wastewater was carried out in a batch-type reactor. The initial pH of wastewater(7-10), volumetric flow rate(1-2l/min) and ozone concentration(20~30 mg/l) of aerating gas were considereal as experimental variables in the ozone treatment. Phenol was decomposed easily by the ozone in a batch treatment, where the rate determining step was the COD removal that is decomposition of intermediates formed by the ozonation of phenol. Phenol decomposition and COD removal could be expressed by the first order reaction for the phenol concentration and COD, respectively. Rate constants of phenol decomposition and COD removal increased with the initial pH, volumetric flow rate and ozone concentration of aeration gas. Under the present experimental condition, their relationships could be given by for the phenol decomposition $k'=4.46\times 10^{-9}[pH]_o ^{3.94}[O_3]^{1.42}Q_{O3}^{1.57}$ for the COD removal $k=2.46\times 10^{-10}[pH]_o ^{5.19}[O_3]^{1.15}Q_{O3}^{1.19}$

  • PDF

Tracer Study Using $H_2O^{18}$ on the Oxidation of Vanadium (III) by Molecular Oxygen (산소에 의한 바나듐 (III) 이온의 산화반응에 대한 $O^{18}$ 동위원소 연구)

  • Kim, Myeong Ja;Choe, Dong Sik
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.259-266
    • /
    • 1974
  • Isotopic experiments using $H_2O^{18}$ on the oxidation of V(III) in acid perchlorate by molecular oxygen were performed in the range pH 1.0 to 3.0. At pH < 2, where a rate equation of the form TEX>$ -\frac{d[V(III)]}{dt}=k_1\frac{[O_2][V(III)]}{[H^+]}$ is adequate, the tracer study clearly indicated that all the product vanadyl ion's ($VO^{2+}$) oxygen originated from the molecular oxygen. At pH > ~2, where a different rate expression of the form $-\frac{d[V(III)]}{dt}=K_2\frac{[O_2][V(III)]^2}{[Ht]^2}$is required, the isotopic experiment showed that half the vanadyl oxygen originated from the molecular oxygen. Considering the results of the isotopic study, a mechanism for the V(Ⅲ)-O2 reaction at pH < ~2, may be suggested as follows: The tracer results at pH > ~2 imply that the rate determining step may be $$ V_2(OH)_2^{4+} + O_2 \rightarrow 2VO^{2+} + H_2O_2$$ followed by $$V_2(OH)_2^{4+} + H_2O_2 \rightarrow 2VO^{2+} + 2H_2O$$ after establishing the equilibria V^{3+} + H_2O \leftrightarrow VOH^{2+} + H^+, and 2VOH^{2+}\leftrightarrow V_2(OH)_2^{4+}$$

  • PDF