• Title/Summary/Keyword: Rat2 cell line

Search Result 162, Processing Time 0.025 seconds

Functional Characterization and Regional Expression of Dopamine Transporter (도파민 수송체의 기능적 특성 및 발현에 관한 연구)

  • 이상훈;이송득;성기욱;이동섭;이용성;고재경
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.161-168
    • /
    • 1995
  • Brain dopamine systems play a central role in the control of movement, hormone release, and many complex behavior. The action of dopamine at its synapse is terminated predominately by high affinity reuptake into presynaptic terminals by dopamine transporter (DAT). The dopamine transporter(DAT) is membrane protein localized to dopamine-containing nerve terminals and closely related with cocaine abuse, Parkinsonism, and schizophrenia. In present study, the recombinant plasmid pRc/CMV-DAT, constructed by subcloning of a cDNA encoding a bovine DAT into eukaryotic expression vector pRc/CMV, was stably transfected into CV-1 cells(monkey kidney cell line). The DAT activities in the cell lines selected by Geneticin$^{R}$ were determined by measuring the uptake of $[^3H]$-dopamine. The transfected cell lines showed 30-50 fold higher activities than untransfected CV-1 cell line, and this result implies that DAT is well expressed and localized in transfected cells. The transfected cells accumulated $[^3H]$-dopamine in a dose-dependent manner with a $K_{m}$ of 991.6nM. Even though high doses of norepinephrine, epinephrine, serotonin, and choline neurotransmitters inhibited the uptake of $[^3H]$-dopamine, DAT in transfected cell line was proven to be much more specific to dopamine. The psychotropic drugs such as GBR12909, CFT, normifensine, clomipramine, desipramine, and imipramine inhibited significantly the dopamine uptake in tissue culture cells stably transfected with DAT cDNA. Radioactive in situ hybridization was done to map the cellular localization of DAT mRNA-containing cells in the adult rat central nervous system. The strong hybridization signals were detected only in the substantia nigra pars compacta and ventral tegmental area. The restricted anatomical localization of DAT mRNA-containing cells confirms the DAT as a presynaptic marker of dopamine-containing cells in the rat brain.

  • PDF

Identification of Functionally Different Rat IgE in RBL-2H3 Exocytosis

  • Kim, Jin-Sub;Cho, Sungae;Joo, Kyoung-Hwan;Lee, Joon-Sang;Conrad, Daniel H.;Cho, Sung-Weon
    • IMMUNE NETWORK
    • /
    • v.2 no.4
    • /
    • pp.195-201
    • /
    • 2002
  • Background: IgE is closely related to the development of allergies. However, the poor relationship between the specific IgE level and the severity of allergic diseases suggests the possibility of functionally different IgE isoforms. With this in mind, rat basophilic leukemia (RBL)-2H3 activation was analyzed with each type of rat IgE for two parameters, exocytosis and IL-4 mRNA production. RBL-2H3 has been well documented in the rat mucosal mast cell line. Methods: RBL-2H3 cells sensitized with each kind of rat IgE was activated by cross-linking FcRI with B5 (monoclonal anti-rat IgE mouse IgG antibodies). The RBL-2H3 exocytosis was measured by analyzing the ${\beta}$-hexosaminidase level, and the level of IL-4 mRNA synthesis was analyzed using semiquantitative RT-PCR. Rat IgE, which was produced by a parasite infection (REP), was prepared using either Paragonimus westermani metacercariae (REP-PW) or Anisakis simplex third stage larvae (REP-AS). A rat IgE prototype of IR162 was prepared by a peritoneal injection of immunocytoma. Results: The level of exocytosis showed a linear relationship with the rat IgE concentration when REP-PW or REP-AS was applied. However, it exhibited a biphasic response with IR162. In addition, the time course of heating at $56^{\circ}C$ illustrated the similarity between REP-PW and REP-AS, which differed from that of IR162. In contrast, the level of IL-4 mRNA synthesis in the RBL-2H3 cells with IR162 was comparable to that of either REP-PW or REP-AS. Conclusion: These results suggest that functionally different rat IgE isoforms exists in RBL-2H3 exocytosis.

Neuroprotective Effects of Berberine in Neurodegeneration Model Rats Induced by Ibotenic Acid

  • Lim, Jung-Su;Kim, Hyo-Sup;Choi, Yoon-Seok;Kwon, Hyock-Man;Shin, Ki-Soon;Joung, In-Sil;Shin, Mi-Jung;Kim, Yun-Hee
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.203-209
    • /
    • 2008
  • Berberine, an isoquinoline alkaloid found in Coptidis Rhizoma(goldenthread) extract, has multiple pharmacological effects such as anti-inflammatory, antimicrobial and anti-ischemic effects. In the present study, we examined the effects of berberine on neuronal survival and differentiation in a hippocampal precursor cell line and in the memory deficient rat model. Berberine increased in a dose dependent manner the survival of hippocampal precursor cells as well as differentiated cells. In addition, berberine promoted neuronal differentiation of hippocampal precursor cells. In the memory deficient rat model induced by stereotaxic injection of ibotenic acid into entorhinal cortex(Ibo model), hippocampal cells were increased about 2.7 fold in the pyramidal layer of CA1 region and about 2 fold in the dentate gyrus by administration of berberine after 2 weeks of ibotenic acid injection. Furthermore, neuronal cells immunoreactive to calbindin were increased in the hippocampus and entorhinal cortex area by administration of berberine. Taken together, these results suggest that berberine has neuroprotective effect in the Ibo model rat brain by promoting the neuronal survival and differentiation.

Phospholipases Dl and D2 Regulate Different Phases of Exocytosis in Mast Cells

  • Lee, Jun-Ho;Chang, Sung-Ho;Kim, Young-Mi;Her, Her Erk;Choi, Wahn-Soo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.135.1-135.1
    • /
    • 2003
  • The rat mast cell line RBL-2H3 contains both phospholipase D (PLD)1 and PLD2. Previous studies with this cell line indicated that expressed PLD1 and PLD2 are both strongly activated by stimulants of secretion. We now show by use of PLDs tagged with enhanced green fluorescent protein that PLD1, which is largely associated with secretory granules, redistributes to the plasma membrane in stimulated cells by processes reminiscent of exocytosis and fusion of granules with the plasma membrane. (omitted)

  • PDF

Effect of Yinjinchunggan-tang based Herb Formulae Containing Wasong and Eosungcho on Fibrogenesis (인진청간탕 및 와송 어성초 가미방의 간섬유화억제에 미치는 효과)

  • Moon, Young-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.2
    • /
    • pp.153-169
    • /
    • 2011
  • Objectives : This study was performed to investigate the anti-fibrogenic effect and the effect on cell growth and apoptosis in YJCGT, YJCGT YSO and YJCGT YSCO on thioacetamide-induced rat liver tissue and the immortalized human hepatic cell line LX2. Materials and Methods : LX2 cells were treated with various concentrations (0, 50, 150, 300 ug/ml) of YJCGT, Y+YSO, and Y+YSCO extract for 24, 48 and 72 hours. After the treatment, cell viability was measured by using MTT assay. Caspase inhibitor assay, and cell viability were determined by a colorimetric assay with PMS/MTS solution. Rat liver fibrosis was induced by intraperitoneal thioacetamide injection 150 mg/kg 3 times a week for 5 weeks. After the treatment, body weight, liver & spleen weights, liver function test, the complete blood cell count and the change of portal pressure were studied. After YJCGT, Y+YSO, and Y+YSCO treatment, percentages of collagen in thioacetamide-induced rat liver tissue were measured. Results : The viability of the LX2 cell decreased in a dose- and time-dependent manner. Exposure of LX2 cells to YJCGT, YJCGT+YSO and YJCGT+YSCO induced caspase-3 activation, but co-treatment of YJCGT, YJCGT+YSO and YJCGT+YSCO with the pan-caspase inhibitor Z-VAD-FMK, and the caspase-3 inhibitor Z-DEVE-FMK, blocked apoptosis. There was no difference in rat body weight between the thioacetamide only group and the YJCGT, YJCGT+YSO and YJCGT+YSCO groups. In the YJCGT, YJCGT YSO and YJCGT YSCO groups, the serum level of GPT significantly went down compared with the thioacetamide only group. In the YJCGT, Y+YSO, Y+YSCO groups, white blood cell elevated by thioacetamide injection decreased but RBC, Hgb, and Hct increased. In the Y+YSO group, the portal pressure elevated by thioacetamide injection significantly decreased. In the histological finding, thioacetamide injections caused severe fibrosis, but YJCGT, Y+YSO, and Y+YSCO treatment significantly reduced the amounts of hepatic collagens. Conclusions : YJCGT, Y+YSO, and Y+YSCO inhibit the growth of LX2 cells by inducing apoptosis through caspase activity. YJCGT, Y+YSO, and Y+YSCO have beneficial effects on the treatment of cirrhotic patients as well as patients with chronic hepatitis.

Gene Expression Analysis of Rat Liver Epithelial Cells in Response to Thioacetamide

  • Park, Joon-Suk;Yeom, Hye-Jung;Jung, Jin-Wook;Hwang, Seung-Yong;Lee, Yong-Soon;Kang, Kyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.203-208
    • /
    • 2005
  • Thioacetamide (TA) is potent haptotoxincant that requires metabolic activation by mixed-function oxidases. Micrcarray technology, which is massive parallel gene expression profiling in a single hybridization experiment, has provided as a powerful molecular genetic tool for biological system related toxicant. In this study we focus on the use of toxicogenomics for the determination of gene expression analysis associated with hepatotoxicity in rat liver epithelial cell line WB-F344 (WB). The WB cells was used to assess the toxic effects of TA. WB cells were exposed to two concentrations of TA-doses which caused 20% and 50% cell death were chosen and the cells exposed for periods of 2 and 24 h. Our data revealed that following the 2-h exposure at the both of doses and 24-h exposure at the low doses, few changes in gene expression were detected. However, after 24-h exposure of the cells to the high concentration, multiple changes in gene expression were observed. TA treatment gave rise predominantly to up-regulation of genes involved in cell cycle and cell death, but down-regulation of genes involves in cell adhesion and calcium ion binding. Exposure of WB cells to higher doses of the TA gave rise to more changes in gene expression at lower exposure times. These results show that TA regulates expression of numerous genes via direct molecular signaling mechanisms in liver cells.

Morus alba Accumulates Reactive Oxygen Species to Initiate Apoptosis via FOXO-Caspase 3-Dependent Pathway in Neuroblastoma Cells

  • Kwon, Young Hwi;Bishayee, Kausik;Rahman, Md. Ataur;Hong, Jae Seung;Lim, Soon-Sung;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.630-637
    • /
    • 2015
  • Morus alba root extract (MARE) has been used to treat hyperglycaemic conditions in oriental medicine. Here, we studied whether MARE possesses a cytotoxic effect on neuroblastoma. To check the cytotoxicity generated by MARE was whether relatively higher against the cancer cells rather than normal cells, we chose a neuroblastoma cell line (B103) and a normal cell line (Rat-2). A CCK assay revealed that MARE ($10{\mu}g/ml$) reduced cell viability to approximately 60% compared to an untreated control in B103 cells. But in Rat-2 cells, MARE induced relatively lower cytotoxicity. To investigate the mechanisms underlying the cytotoxic effect of MARE, we used flow cytometry combined with immunoblot analyses. We found that MARE-treatment could accumulate ROS and depolarize mitochondria membrane potential of B103 cells. Further treatment with MARE in B103 cells also could damage DNA and induce apoptosis. An expression study of p-Akt also suggested that there was a reduction in cellular proliferation and transcription along with the process of apoptosis, which was further evidenced by an increase in Bax and cleaved-caspase 3 activity. Together, our findings suggest that MARE produces more cytotoxicity in cancer cells while having a relatively attenuated effect on normal cells. As such, MARE may be a safer option in cancer therapeutics, and it also shows potential for the patients with symptoms of hyperglycemia and cancer.

Comparison of the Antihistaminic Activity Between Cetirizine Enantiomers

  • Park-Choo, Hae-Young;Choi, Sun-Ok;Lee, Seok-Ho
    • Biomolecules & Therapeutics
    • /
    • v.9 no.4
    • /
    • pp.282-284
    • /
    • 2001
  • The antiallergic drug, cetirizine, inhibits the histamine release from a rat basophilic leukemia (RBL-2H3) cell line, which is frequently used as a mast cell model. By investigating inhibitory activities of (+)- and (-)-cetirizine in RBL-2H3 cells on the histamine release, we aimed to evaluate the effect of their structual characteristics on the antihistamine activity. The study on RBL-2H3 cell has clearly demonstrated that the (-)-cetirizine is significantly more potent than the (+)- or the racemic cetirizine, although there was no difference in pharmacokinetics between (+)- and (-)-cetirizine in rats.

  • PDF

DNA Microarray Analysis of Immediate Response to EGF Treatment in Rat Schwannoma Cells

  • OH, Min-Kyu;Scoles, Daniel R.;Pulst, Stefan-M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.444-450
    • /
    • 2005
  • Epidermal growth factor (EGF) activates many intracellular effector molecules, which subsequently influence the expression levels of many genes involved in cell growth, apoptosis and signal transduction, etc. In this study, the early response of gene expressions due to EGF treatment was monitored using oligonucleotide DNA microarrays in rat schwannoma cell lines. An immunoblotting experiment showed the successful activation of EGF receptors and an effector protein, STAT5, due to EGF treatment. The microarray study showed that 35 genes were significantly induced and 2 were repressed within 60 min after the treatment. The list of induced genes included early growth response 1, suppressor of cytokine signaling 3, c-fos, interferon regulatory factor 1 and early growth response 2, etc. According to the microarray data, six of these were induced by more than 10-fold, and showed at least two different induction patterns, indicating complicated regulatory mechanisms in the EGF signal transduction.

Whole Genomic Expression Analysis of Rat Liver Epithelial Cells in Response to Phenytoin

  • Kim, Ji-Hoon;Kim, Seung-Jun;Yeon, Jong-Pil;Yeom, Hye-Jung;Jung, Jin-Wook;Oh, Moon-Ju;Park, Joon-Suk;Kang, Kyung-Sun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.120-125
    • /
    • 2006
  • Phenytoin is an anti-epileptic. It works by slowing down impulses in the brain that cause seizures. The recent microarray technology enables us to understand possible mechanisms of genes related to compounds which have toxicity in biological system. We have studied that the effect of a compound related to hepatotoxin in vitro system using a rat whole genome microarray. In this study, we have used a rat liver epithelial cell line WB-F344 and phenytoin as a hepatotoxin. WB-F344 was treated with phenytoin for 1 to 24 hours. Total RNA was isolated at times 1, 6 and 24h following treatment of phenytoin, and hybridized to the microarray containing about 22,000 rat genes. After analysis with clustering methods, we have identified a total of 1,455 differentially expressed genes during the time course. Interestingly, about 1,049 genes exhibited differential expression pattern in response to phenytoin in early time. Therefore, the identification of genes associated with phenytoin in early response may give important insights into various toxicogenomic studies in vitro system.