• Title/Summary/Keyword: Rat skeletal muscle

Search Result 121, Processing Time 0.026 seconds

Temporal Pattern of cAMP Concentrations and α-Actin mRNA Expression in Skeletal Muscle of Cimaterol-Fed Rats

  • Kim, Y.S.;Duguies, M.V.;Kim, Y.H.;Vincent, D.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.5
    • /
    • pp.528-533
    • /
    • 1997
  • Twenty four female Sprague-Dawley rats weighing about 190 g were used to examine changes in muscle cAMP concentrations and steady-state levels of skeletal muscle ${\alpha}$-actin mRNA during chronic administration of cimaterol, a ${\beta}$-adrenergic agonist. Cimaterol was mixed in a powdered rat diet at 10 mg/kg diet. At 3 and 21 days after the start of treatment, skeletal muscle and heart samples were collected for the measurement of cAMP concentrations and skeletal muscle ${\alpha}$-actin mRNA levels. Cimaterol increased (p < 0.01) body weight gain gradually during the first seven days of the trial period, but not thereafter. Most skeletal muscle weights and the ratio of muscle weight to body weight were increased (p < 0.05) by cimaterol treatment both at 3 and 21 days. Heart weight was also increased (p < 0.05) by cimaterol treatment at 3 and 21 days, but the ratio of heart weight to body weight was increased (p < 0.05) only at 3 day. Cimaterol decreased (p < 0.05) cAMP concentration of gastrocnemius muscle at both 3 and 21 days after treatment. However, cimaterol tended (p = 0.07) to increase cAMP concentration at 3 days in the heart. Cimaterol tended (p = 0.08) to increase the steady-state level of ${\alpha}$-actin mRNA by 60% in gastrocnemius muscle at 3 days but had no effect at 21 days. The results indicate that the pattern of hypertrophic response to chronic dietary administration of cimaterol is different between cardiac and skeletal muscle. In skeletal muscles it appears that the hypertrophy induced by cimaterol is partly due to stimulated myofibrillar protein synthesis at a pre-translational level.

Effect of Age on Glucose Metabolism of Skeletal Muscle in Rats (흰쥐에서 연령이 골격근의 당 대사에 미치는 영향)

  • Jang, Eung-Chan;Youn, Woon-Ki;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.94-100
    • /
    • 2001
  • Background: It is doubtful that aging causes deteriorated glucose metabolism and insulin resistance of skeletal muscle. Some researchers had different results about it. So we have studied the mechanism responsible for the abnormal glucose tolerance associated with aging in rapidly growing and matured rats. Materials and Methods: Animals were used S.D. rats. Growing rats were 7 weeks old (BW: 160-190 gm) and matured rats were 28 weeks old (BW: 420-525 gm). Results: Fasting blood glucose and plasma insulin levels were significantly elevated in matured rat compared with growing rats. And during oral glucose tolerance test the glucose level was also significantly elevated in matured rats. These results confirmed an insulin resistant state of aging. Insulin levels at 30 minutes of oral glucose tolerance test was significantly elevated in growing rat. But at 120 minutes it was maintained at higher level in matured rats than in growing rats. It suggested the possibility of increased insulin secretion by initial stimulation of beta-cells in growing rats, and increased secretion and decreased catabolic rate of insulin in matured rats. Glucose uptake rate of soleus muscle in matured rats was lower than that of growing rats, but the difference was not statistically significant. The dose(insulin)-responsive(glucose uptake) curve of soleus muscle was only slightly deviated to the right side. Conclusion: Glucose metabolism of rat skeletal muscle was worsened by aging. The data of glucose uptake experiments suggested the possibility of insulin resistance of skeletal muscle in matured rats. but the mechanism of insulin resistance of skeletal muscle need further studies.

  • PDF

Effect of Thyroid Hormone on the Gene Expression of Myostatin in Rat Skeletal Muscle

  • Ma, Yi;Chen, Xiaoqiang;Li, Qing;An, Xiaorong;Chen, Yongfu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.275-281
    • /
    • 2009
  • Modification of thyroid hormone levels has a profound effect on skeletal muscle differentiation, predominantly through direct regulation involving thyroid hormone receptors. Nevertheless, little is known about the regulation of myostatin gene expression in skeletal muscle due to altered concentrations of thyroid hormone. Thus, the goal of our study was to find out whether altered thyroid states could change the gene expression of myostatin, the most powerful inhibitor of skeletal muscle development. A hyperthyroid state was induced in rats by daily injections of L-thyroxine 20 mg/100 g body weight for 14 days, while a hypothyroid state was induced in another group of rats by administering methimazole (0.04%) in drinking water for 14 days. After a period of 14 days of L-thyroxine treatment we observed a significant increase of myostatin expression both in mRNA and protein level. However, decreased expression of myostatin mRNA and protein were observed in hypothyroid rats. Furthermore, our studies demonstrated that the upregulation of myostatin gene expression might be responsible for the loss of body weight induced by altered thyroid hormone levels. We concluded that myostatin played a role in a metabolic process in muscle that was regulated by thyroid hormone.

The effect of Ginkgo biloba Extract (GB) on Glucose Uptake in L6 Rat Skeletal Muscle Cells (L6 근육세포에서 은행잎 추출물의 당 흡수효과)

  • Kim, Soo-Cheol;Han, Mi-Young;Kim, Hak-Jae;Jung, Kyung-Hee
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • Objectives: Evidences suggests that Ginkgo biloba, a widely used traditional medicine, shows a hypoglycemic effect. Thus, we investigatd the effect of G. biloba extract (GB) on glucose uptake in L6 rat skeletal muscle cells. Method : Effect of GB on glucose uptake and phosphatidylinositol (PI) 3-kinase activity were assessed using Glucose uptake assay and PI 3-kinase assay, respectively. Also, AMP-activated protein kinase (AMPK), p38 mitogen activated protein kinase (p38 MAPK) expression were identified by Western blot. Results : Glucose uptake assay revealed that GB increased glucose uptake about 2.5-fold compared to thecontrol. GB stimulated the activity of PI 3-kinase which is a major switch element on the glucose uptake pathway. About a 6.5-fold increase in activity of PI 3-kinase was observed with GB. We then assessed the activity of AMPK, another regulatory molecule on the glucose uptake pathway. The result was that GB increased the phosphorylation level of both AMPK ${\alpha}$l and ${\alpha}$2. The activity of p38 MAPK, a downstream mediator of AMPK, was also increased by CB. Conclusion : These results suggest that GB may stimulate glucose uptake through both PI 3-kinase and AMPK mediated pathways in L6 skeletal muscle cells thereby contributing to glucose homeostasis.

  • PDF

Determination of sulfamethazine residues in liver, kidney and muscle according to the time lapsed after oral administration of sulfamethazine sodium to rats (Rat체내 Sulfamethazine 경구투여 후 시간경과에 따른 간장, 신장 및 근육내 잔류함유량 측정)

  • Do, Jae-cheul
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.571-575
    • /
    • 1996
  • Sulfamethazine sodium was orally administrated to Sprague Dawley female rats(body weight: 200~250g) with the sonde caude at the dose of 20mg of sulfamethazine sodium per 100g of body weight for 3 days to investigate the depletion rate of the drug from liver, kidney and muscle of rat. The results obtained were summerized as follows; 1. The mean concentrations of sulfamethazine in liver according to the time lapsed after oral administration of the sulfamethazine sodium were decreased from 1.27ppm at day 1 to 0.28ppm at day 4. 2. Sulfamethazine concentrations in kidney according to the time lapsed after oral administration of the sulfamethazine sodium were decreased from 0.77ppm at day 1 to 0. 12ppm at day 4. 3. The mean concentration of sulfamethazine in skeletal muscle according to the time lapsed after oral administration of the sulfamethazine sodium was at or below 0.09ppm within 4 days after withdrawl of medicated solution.

  • PDF

Effect of Rhodiola Sachalinensis Administration and Endurance Exercise on Insulin Sensitivity and Expression of Proteins Related with Glucose Transport in Skeletal Muscle of Obese Bucker Rat (홍경천 섭취와 운동수행이 비만 쥐의 인슐린 민감도와 골격근내 당수송 관련 단백질 발현에 미치는 영향)

  • Oh Jae-Keun;Shin Young-Oh;Jung Hee-Jung;Lee Jung-Eun
    • Journal of Nutrition and Health
    • /
    • v.39 no.4
    • /
    • pp.323-330
    • /
    • 2006
  • Peripheral insulin resistance in obese/type II diabetes animals results from an impairment of insulin-stimulated glucose uptake into skeletal muscle. Insulin stimulate the translocation of GLUT4 from intracellular location to the plasma membrane. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) is implicated in mediation of fusion of GLUT4-containing vesicle with the plasma membrane. Present study investigated regulatory effects of Rhodiola sachalinensis administration and exercise training on the expression of GLUT4 protein and SNAREs protein in skeletal muscles of obese Zucker rats. Experimental animals were randomly assigned into one of five groups ; lean control(LN), obese control(OB), exercise-treated(EXE), Rhodiola sachalinensis-treated(Rho), combine of Rho & EXE (Rho-EXE). All animals of exercise training (EXE, Rho-EXE) performed treadmill running for 8 weeks, and animals of Rho groups (Rho, Rho-EXE) were dosed daily by gastric gavage during the same period. After experiment, blood were taken for analyses of glucose, insulin, and lipids levels. Mitochondrial oxidative enzyme (citrate synthase, CS ; $\beta$-hydroxyacyl-CoA dehydrogenase, $\beta$-HAD) activity were analysed. Skeletal muscles were dissected out for analyses of proteins (GLUT4, VAMP2, syntaxin4, SNAP23). Results are as follows. Exercise and/or Rhodiola sachalinensis administration significantly reduced body weight and improved blood lipids (TG, FFA), and increased insulin sensitivity. Endurance exercise significantly increased the activity of mitochondrial enzymes and the expression of GLUT4 protein, however, administration of Rhodiola sachalinensis did not affect them. The effect of exercise and/or Rhodiola sachalinensis administration on the expression of SNARE proteins was unclear. Our study suggested that improvement insulin sensitivity by exercise and/or Rhodiola sachalinensis administration in obese Zucker rats is independent of expression of SNARE proteins.

The Activation of Stress-induced Heat Shock Protein 27 and the Relationship of Physical Therapy (스트레스-유도 열충격단백질 27(Heat Shock Protein 27)의 활성과 물리치료의 상관성)

  • Kim, Mi-Sun;Lee, Sung-Ho;Kim, Il-Hyun;Hwang, Byong-Yong;Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Purpose: Heat shock proteins (HSPs) are a group of proteins that are activated when cells are exposed to a variety of environmental stresses, such as infection, inflammation, exposure to toxins, starvation, hypoxia, brain injury, or water deprivation. The activation of HSPs by environmental stress plays a key role in signal transduction, including cytoprotection, molecular chaperone, anti-apoptotic effect, and anti-aging effects. However, the precise mechanism for the action of small HSPs, such as HSP27 and mitogen-activated protein kinases (MAPKs: extracellular-regulated protein kinase 1/2 (ERK1/2), p38MAPK, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), is not completely understood, particularly in application of cell stimulators including platelet-derived growth factor (PDGF), angiotensin II (AngII), tumor necrosis factor $\alpha$ (TNF$\alpha$), and $H_2O_2$. This study examined the relationship between stimulators-induced enzymatic activity of HSP27 and MAPKs from rat smooth and skeletal muscles. Methods: 2-dimensional electrophoresis (2DE) and matrix assisted laser desorption ionizationtime-of-flight/time-of-flight (MALDI-TOF/TOF) analysis were used to identify HSP27 from the intact vascular smooth and skeletal muscles. Three isoforms of HSP27 were detected on silver-stained gels of the whole protein extracts from the rat aortic smooth and skeletal muscle strips. Results: The expression of PDGF, AngII, TNF$\alpha$, and $H_2O_2$-induced activation of HSP27, p38MAPK, ERK1/2, and SAPK/JNK was higher in the smooth muscle cells than the control. SB203580 (30${\mu}$M), a p38MAPK inhibitor, increased the level of HSP27 phosphorylation induced by stimulators in smooth muscle cells. Furthermore, the age-related and starvation-induced activation of HSP27 was higher in skeletal muscle cells (L6 myoblast cell lines) and muscle strips than the control. Conclusion: These results suggest, in part, that the activity of HSP27 and MAPKs affect stressors, such as PDGF, AngII, TNF$\alpha$, $H_2O_2$, and starvation in rat smooth and skeletal muscles. However, more systemic research will be needed into physical therapy, including thermotherapy, electrotherapy, radiotherapy and others.

  • PDF

Effect of Exercise Training on Aging Atrophyin Rat Skeletal Muscle III. Effect of Short Term Exercise Training for Senile Rat (흰쥐 골격근의 노화성 위축에 대한 운동훈련의 영향 III.노화 흰쥐에 적용한 단기간의 운동훈련의 영향)

  • 박승한;박원학;정형재
    • Biomedical Science Letters
    • /
    • v.2 no.1
    • /
    • pp.91-108
    • /
    • 1996
  • The present study was designed to examine effect of short term treadmill and weight-training on aging arophy in the rat skeletal muscle. Male rats of 24 months old were used. Each groups included control, treadmill and weight-training for 4 weeks by using treadmill apparatus and body press apparatus. The histo and cytochemical, ultrastructural and stereological changes in senile skeletal muscles of the rat were observed in the present study. During the training period the body weight and muscular weight in all groups remained constant. The volume density of muscle fiber type IIC and IIB were increased, that of type IIA was decreased, but type I remained constant in treadmill-training group. In weight-training rat, the density of type IIA and IIB were increased, both those of type IIC was decreased. But, all changes of muscle fiber type is not significant. Senile control group some usual formation of mild contraction band, liposuscin pigment and muscular splitting were observed. After treadmill-training, histological and ultrastructural changes occurred in the muscle fiber, such as irregularity of the sarcolemma, interfibrillar vacuolization, longitudinal splitting, and widened I-bond. After weight-training, the changes occurred in the trained muscle fiber, such as appearances of many lysosomes and autophagic vacuoles, severe contraction band, and breakup of myofibrils. Histo and cytochemical studies showed that the activities of succinic dehydrogenase and acid phosphatase remained constant, activities of $Mg^{++}$-ATPase decrease with training. Stereological changes were not observed in the volume and numerical density of all subject component, but the surface density of mitochondrial inner membrane was increased with treadmill-training. These experimental results suggested that endurance training during short-term may result in the adaptible response in senile skeletal muscles. On the other side, weight-training is bad for senile skeletal muscle.

  • PDF

Effect of Orally Administered Branched-chain Amino Acids on Protein Synthesis and Degradation in Rat Skeletal Muscle

  • Yoshizawa, Fumiaki;Nagasawa, Takashi;Sugahara, Kunio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.133-140
    • /
    • 2005
  • Although amino acids are substrates for the synthesis of proteins and nitrogen-containing compounds, it has become more and more clear over the years that these nutrients are also extremely important as regulators of body protein turnover. The branched-chain amino acids (BCAAs) together or simply leucine alone stimulate protein synthesis and inhibit protein breakdown in skeletal muscle. However, it was only recently that the mechanism(s) involved in the regulation of protein turnover by BCAAs has begun to be defined. The acceleration of protein synthesis by these amino acids seems to occur at the level of peptide chain initiation. Oral administration of leucine to food-deprived rats enhances muscle protein synthesis, in part, through activation of the mRNA binding step of translation initiation. Despite our knowledge of the induction of protein synthesis by BCAAs, there are few studies on the suppression of protein degradation. The recent findings that oral administration of leucine rapidly reduced $N^{\tau}$-methylhistidine (3-methylhistidine; MeHis) release from isolated muscle, an index of myofibrillar protein degradation, indicate that leucine suppresses myofiblilar protein degradation. The details of the molecular mechanism by which leucine inhibits proteolysis is just beginning to be elucidated. The purpose of this report was to review the current understanding of how BCAAs act as regulators of protein turnover.

Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle

  • Bae, Jun Hyun;Seo, Dae Yun;Lee, Sang Ho;Shin, Chaeyoung;Jamrasi, Parivash;Han, Jin;Song, Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.585-592
    • /
    • 2021
  • Cisplatin has been reported to cause side effects such as muscle wasting in humans and rodents. The physiological mechanisms involved in preventing muscle wasting, such as the regulation of AKT, PGC1-α, and autophagy-related factor FOXO3a by MuRF 1 and Atrogin-1, remain unclear following different types of exercise and in various skeletal muscle types. Eight-week-old male Wistar rats (n = 34) were assigned to one of four groups: control (CON, n = 6), cisplatin injection (1 mg/kg) without exercise (CC, n = 8), cisplatin (1 mg/kg) + resistance exercise (CRE, n = 9) group, and cisplatin (1 mg/kg) + aerobic exercise (CAE, n = 11). The CRE group performed progressive ladder exercise (starting with 10% of body weight on a 1-m ladder with 2-cm-interval grids, at 85°) for 8 weeks. The CAE group exercised by treadmill running (20 m/min for 60 min daily, 4 times/week) for 8 weeks. Compared with the CC group, the levels of the autophagy-related factors BNIP3, Beclin 1, LC3-II/I ratio, p62, and FOXO3a in the gastrocnemius and soleus muscles were significantly decreased in the CRE and CAE groups. The CRE and CAE groups further showed significantly decreased MuRF 1 and Atrogin-1 levels and increased phosphorylation of AKT, FOXO3a, and PGC1-α. These results suggest that both ladder and aerobic exercise directly affected muscle wasting by modulating the AKT/PGC1-α/FOXO3a signaling pathways regardless of the skeletal muscle type.