• 제목/요약/키워드: Rat calvaria defect

검색결과 21건 처리시간 0.019초

Effect of herbal extracts on bone regeneration in a rat calvaria defect model and screening system

  • Lee, Dong-Hwan;Kim, Il-Kyu;Cho, Hyun-Young;Seo, Ji-Hoon;Jang, Jun-Min;Kim, Jin
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제44권2호
    • /
    • pp.79-85
    • /
    • 2018
  • Objectives: The aim of this study was to evaluate the effects of herbal extracts on bone regeneration. Two known samples were screened. Materials and Methods: We previously established a rat calvaria defect model using a combination of collagen scaffold and herbal extracts. An 8 mm diameter trephine bur with a low-speed dental hand piece was used to create a circular calvaria defect. The experimental group was divided into 4 classifications: control, collagen matrix, Danshen with collagen, and Ge Gan with collagen. Animals in each group were sacrificed at 4, 6, 8, and 10 weeks after surgery, and bone regeneration ability was evaluated by histological examination. Results: Results revealed that both Danshen and Ge Gan extracts increased bone formation activity when used with collagen matrix. All groups showed almost the same histological findings until 6 weeks. However, after 6 weeks, bone formation activity proceeded differently in each group. In the experimental groups, new bone formation activity was found continuously up to 10 weeks. In the Danshen and Ge Gan groups, grafted materials were still present until 10 weeks after treatment, as evidenced by foreign body reactions showing multinucleated giant cells in chronic inflammatory vascular connective tissue. Conclusion: Histological analyses showed that Danshen and Ge Gan extractions increased bone formation activity when used in conjunction with collagen matrix.

백서 두개부 결손부에 이식된 이종골 치유과정에 히알루론산이 미치는 영향에 관한 연구 (THE EFFECT OF HYALURONIC ACID ON XENOGRAFT IN RAT CALVARIAL DEFECT)

  • 조이수;민승기
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권3호
    • /
    • pp.205-215
    • /
    • 2002
  • The purpose of this study was to evaluate the tissue response in various bone grafting materials, especially xenogenous bone materials in vivo, compare of bone formation capacity of various bone grafting materials on rat skull defects and evaluate the effect of Hyaluronic acid on healing of human Demineralized Freezed Dried Bone allogenous graft (DFDBA) materials in rat calvarial defects. 30 Sprague-Dawly rats were divided into 4 groups. $7{\times}7mm$ size bony defect were artificially prepared in the calvaria (both parietal bone) of all 30 rats and follwed group grafting of autogenous bone graft on right side and allogenic DFDBA on left side bone graft (rat DFDB) in 15 control group, but in 15 experimental group, xenograft (human DFDB) on left side, hyaluronic acid treated with xenograft on right side. Sequential sacrifices was performed at 1, 2, 4, 6, 8 weeks of experiment. These specimens were stained with H&E and MT stain, and then histologic analysis under light microscope was carried out. There were inflammatory reaction in all graft material during early stage. Autogenous and Allogenous DFDBA graft group observed inflammatory reaction at 1 week. Xenograft group persistant inflammatory reaction until 4 weeks, but in HA treated xenograft group inflammatory reaction was decreased at 2 weeks. Osteoblastic activity in control group was begun at 2 week, xenograft group was delayed at 6 weeks, however HA treated xenograft group was begun at 4 weeks. At 2 week, mild osteoclastic activity were observed in all xenograft group not in concerned to HA, but there was no difference each group after 4 weeks. There are most activated angiogenesis around graft mateirals in xenograft group at 2 weeks, but in HA treated xenograft group, decreased angiogenesis was observed at same time. Bone formation and bone maturation of xenograft group, there was no difference in HA treatment, was less than control group. Fibrosis around xenograft materials were observed until 6 weeks, there was no difference between xenograft and HA treated groups.

Alendronate가 백서에서 두개골 결손의 재생에 미치는 영향 (Effect of Alendronate on Bone Regeneration in Defect of Rat Calvaria)

  • 정찬두;김옥수;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제31권2호
    • /
    • pp.389-400
    • /
    • 2001
  • Previous studies have demonstrated an increase in bone mass and density with the use of bisphosphonate in osteoporosis. This agent acts as an inhibitor of osteoclastic activity, and results in increase of net osteoblastic activity. Currently, it has been reported that bisphosphonate has direct effect on osteoblast. This study was designed to evaluate the effect of alendronate on bone regeneration in defect of rat calvaria. The animals used for these experiments were 48 male rats, over 6-8 weeks old. They were divided into three groups according to the dose of alendronate($MK-217^{(R)}$, Merck, USA) administered. After the calvarial defects were surgically created, the rats received a peritoneal alendronate(0.25mg/kg) in group I, a peritoneal alendronate(1.25mg/kg) in group II, and a peritoneal normal saline injection in the control group. Three and six weeks later, blood was sampled and evaluated for alkaline phosphatase activity. The animals were sacrificed for histological observation and histometric analysis of the level of bone formation. The alkaline phosphatase activity was similar in three groups at 3 weeks of experiment. The activity at 6 weeks increased more than twice, compared to 3 weeks, and was slightly higher in group I than the other two groups. In histological observation, all the groups at 3 weeks, osteoblast rimming and new bone formation were observed along the defect margin. At 6 weeks, the defect was almost closed with new and more mature bone, but new bone is thinner than original bone in the central portion of defect. In histometric analysis, group I and II at 3 weeks showed significantly greater new bone formation than the control, and all the groups at 6 weeks showed similar amount of bone formation. These result suggest that alendronate administration in the dose of 0.25mg/kg and 1.25mg/kg promote osseous regeneration.

  • PDF

후박 및 대조추출혼합물이 골조직 재생에 미치는 영향 (Tissue regenerative activity of Magnolia and Zizyphi fructus extract mixtures)

  • 이용무;구영;배기환;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제27권1호
    • /
    • pp.165-177
    • /
    • 1997
  • The purpose of this study was to perform on the biological activity of Magnolia and Zizyphi fructus extract mixtures on the wound healing of defected rat calvaria. For the determination of the mixture ratio of two extracts for oral administration, preliminary experiments were performed with the mixture combination of 2000 and $3000{\mu}g/ml$ of Magnolia extract, and also 20, 30, 200, 300, 2000 and $3000{\mu}g/ml$ of Zizyphi fructus extract, respectively and divided into 6 groups. The combination of extracts mixture were tested on the enhancing effect of cellular activity. The effect of the extracts mixture on the cellular activity was evaluated using MTT method and measured on the results with optical density by ELISA reader. The ability to tissue regeneration of the extracts mixture was performed by measuring new bone and new connective tissue regeneration on the 5mm defected rat calvaria for 1, 2 and 3 weeks after oral administration of 2 different dosages groups : 10:1(0.1g/kg) and 10:1(0.5g/kg). It was employed the same dosages of unsaponifiable fraction of Zea Mays L as positive controls. Each group of rat was sacrificed and en bloc section for histological examination. The effect on the cellular activity of each mixture ratio showed significantly higher in $2000{\mu}g/ml$ of Magnolia extract and $200{\mu}g/ml$ of Zizyphi fructus extract group to compare with other groups. These preliminary results showed that appropriate mixture ratio of two extracts was 10:1 of Magnolia and Zizyphi fructus extract. Histological examination on the activity of tissue regeneration of each group showed that 2weeks and 3weeks specimens of 0.5g/kg of 10:1 extract mixture of Magnolia and Ziziphi fructus administrated rat calvaria revealed significantly more osteoid and new bone formation of defected calvaria with unification of defected area than the specimens of any other negative and positive controls. Even though the specimen administrated the same dosages of unsaponifiable fraction of Zea Mays L, positive controls, showed the trend that they promote significantly the repair of calvarial defect, their bone reparative activities were less inductive than the same dosages of Magnolia and Ziziphi fructus extract mixture. These results implicated that the mixture of Magnolia and Zizyphi fructus extracts should be highly effective on the wound healing of bony defected site and might have potential possibilities as an useful drug to promote periodontal tissue regeneration.

  • PDF

백서 두개골 결손부에 Hydroxylapatitie와 TGF-β 매식 후 치유과정에 관한 연구 (HEALING PROCESS OF THE CALVARIAL DEFECT FILLED WITH HYDROXYLAPATITE AND TGF-β IN RAT)

  • 권혁도;이동근;김은철
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제21권1호
    • /
    • pp.1-12
    • /
    • 1999
  • The purpose of this study was to evaluate the healing process of the calvarial defect filled with hydroxylapatite(HA) and $TGF-{\beta}$ in Rat. 72 Sprague-Dawly rats were divided into 3 groups, control and two experimental groups. Bony defect were artificially prepared in the calvaria of all 72 rats and followed by implantation of HA (experimental group of 24 rats) and HA+$TGF-{\beta}$(another experimental group of 24 rats) into the defects. Sequential sacrifice was performed at 1, 2, 4, 6, 8, 12 weeks of experiment. Obtained specimen was stained with Hematoxylin and Eosin, Masson's Trichrome and Immunohistochemistry. The results were as follows, 1. Granulation tissue was prominent on control group in 1 and 2 weeks. Bony defects were filled with dense fibrous tissue through the whole experimental period and osteoinduction could not be observed in all groups. 2. Inflammatory cell infiltration was prominent on control group in 1 and 2 weeks and osteoclastic activity was high in HA implanted experimental group at 1 and 2 weeks. 3. Inflammatory cell infiltration was less and maturation of fibrous tissue could be found on HA+$TGF-{\beta}$ implanted experimental group at 1 and 2 weeks. 4. Osteoconduction activity was high in HA+$TGF-{\beta}$ implanted experimental group at 2 and 4 weeks but there was no difference after 6 weeks among 3 groups. 5. In grafted site of HA+$TGF-{\beta}$ implanted group, osteonectin expression was slightly increased from 1 week to 6 weeks. In the host site, it was increased from 1 to 4weeks. 6. In grafted site of HA+$TGF-{\beta}$ implanted group, osteocalcin expression was high at 4 weeks. In the host site, we could find the difference among 3 groups. From above results, the HA with mixture of $TGF-{\beta}$ has the potentiality of promoting bone formation in the bony defect area in the rat.

  • PDF

Effect of hydroxyapatite on critical-sized defect

  • Kim, Ryoe-Woon;Kim, Ji-Hyoung;Moon, Seong-Yong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.26.1-26.6
    • /
    • 2016
  • Background: Xenologous or synthetic graft materials are commonly used as an alternative for autografts for guided bone regeneration. The purpose of this study was to evaluate effectiveness of carbonate apatite on the critical-size bone defect of rat's calvarium. Methods: Thirty-six critical-size defects were created on 18 adult male Sprague-Dawley rat calvaria under general anesthesia. Calvarial bones were grinded with 8 mm in daimeter bilaterally and then filled with (1) no grafts (control, n = 10 defects), (2) bovine bone mineral (Bio-$Oss^{(R)}$, Geistlich Pharma Ag. Swiss, n = 11 defects), and (3) hydroxyapatite ($Bongros^{(R)}$, Bio@ Inc., Seongnam, Korea, n = 15 defects). At 4 and 8 weeks after surgery, the rats were sacrificed and all samples were processed for histological and histomorphometric analysis. Results: At 4 weeks after surgery, group 3 ($42.90{\pm}9.33%$) showed a significant difference (p < 0.05) compared to the control ($30.50{\pm}6.05%$) and group 2 ($28.53{\pm}8.62%$). At 8 weeks after surgery, group 1 ($50.21{\pm}6.23%$), group 2 ($54.12{\pm}10.54%$), and group 3 ($50.92{\pm}6.05%$) showed no significant difference in the new bone formation. Conclusions: $Bongros^{(R)}$-HA was thought to be the available material for regenerating the new bone formation.

백서에서 흡수성막과 탈회동결건조골을 이용한 두개골결손부의 골재생 (GUIDED BONE REGENERATION OF CALVARIAL BONE DEFECTS USING BIOABSORBABLE MEMBRANE AND DEMINERALIZED FREEZE DRIED BONE IN RATS)

  • 김수민;여환호;김수관;임성철
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권4호
    • /
    • pp.290-301
    • /
    • 2002
  • The purpose of this study was to evaluate new bone formation and healing process in rat calvarial bone defects using $BioMesh^{(R)}$. membrane and DFDB. Forty eight rats divided equally into 4 groups of 1 control group and 3 experimental groups. Standardized transosseous circular calvarial defects (8 mm in diameter) were made midparietally. In the control group, the defect was only covered with the soft tissue flap. In the experimental group 1, it was filled with DFDB only, in the experimental group 2, it was covered $BioMesh^{(R)}$. membrane only, and in the experimental group 3, it was filled DFDB and covered with membrane. At the postoperative 1, 2, 4, 8 weeks, rats were sacrificed and histologic and histomorphometric analysis were performed. These results were as follows. In histomorphometric analysis, It showed the greatest amount of new bone formation through experimental in the experimental group 3 (P<0.001). The amount of new bone formation at the central portion of the defect was greater in the experimental group 3 than experimental group 2. $BioMesh^{(R)}$. membrane began to resorb at 1 week and resorbed almost completely at 8 weeks after operation. The collapse of membrane into the defect was observed through the experimental periods in the experimental group 2. In the area of collapsed membrane, new bone formation was restricted. These results suggest that maintenance of some space for new bone to grow is required in the use of $BioMesh^{(R)}$. membrane alone in the defect. It is also thought that use of the membrane may promote new bone growth in DFDB graft.

Chitin-fibroin-hydroxyapatite membrane for guided bone regeneration: micro-computed tomography evaluation in a rat model

  • Baek, Young-jae;Kim, Jung-Han;Song, Jae-Min;Yoon, Sang-Yong;Kim, Hong-Sung;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.14.1-14.6
    • /
    • 2016
  • Background: In guided bone regeneration (GBR) technique, many materials have been used for improving biological effectiveness by adding on membranes. The new membrane which was constructed with chitin-fibroin-hydroxyapatite (CNF/HAP) was compared with a collagen membrane (Bio-$Gide^{(R)}$) by means of micro-computed tomography. Methods: Fifty-four rats were used in this study. A critical-sized (8 mm) bony defect was created in the calvaria with a trephine bur. The CNF/HAP membrane was prepared by thermally induced phase separation. In the experimental group (n = 18), the CNF/HAP membrane was used to cover the bony defect, and in the control group (n = 18), a resorbable collagen membrane (Bio-$Gide^{(R)}$) was used. In the negative control group (n = 18), no membrane was used. In each group, six animals were euthanized at 2, 4, and 8 weeks after surgery. The specimens were analyzed using micro-CT. Results: Bone volume (BV) and bone mineral density (BMD) of the new bone showed significant difference between the negative control group and membrane groups (P < 0.05). However, between two membranes, the difference was not significant. Conclusions: The CNF/HAP membrane has significant effect on the new bone formation and has the potential to be applied for guided bone regeneration.

백서두개골 결손부에서 천연물유래 탄산칼슘염 골대체의 골치유에 관한 조직계측학적 평가 (Histomorphometric evaluation of bone healing with natural calcium carbonate-derived bone substitutes in rat calvarial defect)

  • 이충호;장제희;이재목;서조영;박진우
    • Journal of Periodontal and Implant Science
    • /
    • 제38권1호
    • /
    • pp.83-90
    • /
    • 2008
  • Purpose: This study investigated the osteoconductivity of natural calcium carbonate-derived bone substitutes, hen eggshell (ES), and compared with those of commercial bone substitutes. Materials and Methods: Osseous defects created in the rat calvaria were filled with particulated ES(ES-1), ES with calcium-deficient hydroxyapatite surface layer (ES-2), Biocoral(Inoteb, France), and Bio-Oss(Geistlich Pharma, Wolhusen, Switzerland). After 4 and 8 weeks of healing, histomorphometic analysis was performed to evaluate the amount of newly formed mineralized bone area (NB%). Results: Histologic and histomorphometric analysis showed new bone formation and direct bony contact with the grafted materials in all groups. At 4 weeks, Biocoral group showed greater NB% compared to Bio-Oss and ES-1 groups (P<0.05). At 8 weeks, Biocoral and ES-2 groups showed significantly greater NB% compared to Bio-Oss group (P<0.05). Conclusion: These results indicate that natural calcium carbonate-derived bone substitutes with microporous calcium-deficient hydroxyapatite surface layer may be an effective materials treating osseous defects.

Combined effect of bisphosphonate and recombinant human bone morphogenetic protein 2 on bone healing of rat calvarial defects

  • Kim, Ho-Chul;Song, Jae-Min;Kim, Chang-Joo;Yoon, Sang-Yong;Kim, In-Ryoung;Park, Bong-Soo;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제37권
    • /
    • pp.16.1-16.7
    • /
    • 2015
  • Background: This study aimed to investigate new bone formation using recombinant human bone morphogenetic protein 2 (rhBMP-2) and locally applied bisphosphonate in rat calvarial defects. Methods: Thirty-six rats were studied. Two circular 5 mm diameter bony defect were formed in the calvaria using a trephine bur. The bony defect were grafted with $Bio-Oss^{(R)}$ only (group 1, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 (group 2, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 1 mM alendronate (group 3, n = 9) and $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 10 mM alendronate (group 4, n = 9). In each group, three animals were euthanized at 2, 4 and 8 weeks after surgery, respectively. The specimens were then analyzed by histology, histomorphometry and immunohistochemistry analysis. Results: There were significant decrease of bone formation area (p < 0.05) between group 4 and group 2, 3. Group 3 showed increase of new bone formation compared to group 2. In immunohistochemistry, collagen type I and osteoprotegerin (OPG) didn't show any difference. However, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) decreased with time dependent except group 4. Conclusion: Low concentration bisphosphonate and rhBMP-2 have synergic effect on bone regeneration and this is result from the decreased activity of RANKL of osteoblast.