Histomorphometric evaluation of bone healing with natural calcium carbonate-derived bone substitutes in rat calvarial defect

백서두개골 결손부에서 천연물유래 탄산칼슘염 골대체의 골치유에 관한 조직계측학적 평가

  • Lee, Chung-Ho (Department of Periodontology, School of Dentistry, Kyungpook National University) ;
  • Jang, Je-Hee (Department of Periodontology, Graduate School of Dentistry, Kyungpook National University) ;
  • Lee, Jae-Mok (Department of Periodontology, School of Dentistry, Kyungpook National University) ;
  • Suh, Jo-Young (Department of Periodontology, School of Dentistry, Kyungpook National University) ;
  • Park, Jin-Woo (Department of Periodontology, School of Dentistry, Kyungpook National University)
  • 이충호 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 장제희 (경북대학교 대학원 치의학과 치주과학교실) ;
  • 이재목 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 서조영 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 박진우 (경북대학교 치의학전문대학원 치주과학교실)
  • Published : 2008.03.31

Abstract

Purpose: This study investigated the osteoconductivity of natural calcium carbonate-derived bone substitutes, hen eggshell (ES), and compared with those of commercial bone substitutes. Materials and Methods: Osseous defects created in the rat calvaria were filled with particulated ES(ES-1), ES with calcium-deficient hydroxyapatite surface layer (ES-2), Biocoral(Inoteb, France), and Bio-Oss(Geistlich Pharma, Wolhusen, Switzerland). After 4 and 8 weeks of healing, histomorphometic analysis was performed to evaluate the amount of newly formed mineralized bone area (NB%). Results: Histologic and histomorphometric analysis showed new bone formation and direct bony contact with the grafted materials in all groups. At 4 weeks, Biocoral group showed greater NB% compared to Bio-Oss and ES-1 groups (P<0.05). At 8 weeks, Biocoral and ES-2 groups showed significantly greater NB% compared to Bio-Oss group (P<0.05). Conclusion: These results indicate that natural calcium carbonate-derived bone substitutes with microporous calcium-deficient hydroxyapatite surface layer may be an effective materials treating osseous defects.

Keywords

References

  1. Coughlin MJ, Grimes JS, Kennedy MP. Coralline hydroxyapatite bone graft substitute in hindfoot surgery. Foot Ankle Int 2006;27:19-22 https://doi.org/10.1177/107110070602700104
  2. Velich N, Nemeth Z, Toth C, Szabo G. Lont-term results with different bone substitutes used for sinus floor elevation. J Craniofac Surg 2004;15:38-41 https://doi.org/10.1097/00001665-200401000-00013
  3. Yukna RA, Yukna CN. A 5-year follow-up of 16 patients treated with coralline calcium carbonate (Biocoral) bone replacement grafts in infrabony defects. J Clin Periodontol 1998;25:1036-1040 https://doi.org/10.1111/j.1600-051X.1998.tb02410.x
  4. Guillemin G, Patat JL, Fournie J, Chetail M. The use of coral as a bone graft substitute. J Biomed Mater Res 1987;21:557-567 https://doi.org/10.1002/jbm.820210503
  5. Artzi Z, Tal H, Dayan D. Porous bovine bone mineral in healing of human extraction sockets. Part 1: histomorphometric evaluations at 9 months. J Periodontol 2000;71: 1015-1023 https://doi.org/10.1902/jop.2000.71.6.1015
  6. Sculean A, Chiantella GC, Windisch P, Gera I, Reich E. Clinical evaluation of an enamel matrix protein derivative (Emdogain) combines with a bovine-derived xenograft (Bio-Oss) for the treatment of intrabony periodontal defects in humans. Int J Periodontics Restorative Dent 2002;22: 259-267
  7. Valentini P, Abensur DJ. Maxillary sinus grafting with anorganic bovine bone: a clinical report of long-term results. Int J Oral Maxillofac Implants 2003;18:556-560
  8. Dupoirieux L, Pourquier D, Souyris F. Powdered eggshell: a pilot study on a new bone substitute for use in maxillofacial surgery. J Craniomaxillofac Surg 1995;23:187- 194 https://doi.org/10.1016/S1010-5182(05)80009-5
  9. Dupoirieux L, Neves M, Pourquier D. Comparison of pericranium and eggshell as space fillers used in combination with guided bone regeneration: An experimental study. J Oral Maxillofac Surg 2000;58:40-46 https://doi.org/10.1016/S0278-2391(00)80013-0
  10. Dupoirieux L, Pourquier D, Neves M, Teot L. Resorption kinetics of eggshell: an in vivo study. J Craniofac Surg 2001;12:53-58 https://doi.org/10.1097/00001665-200101000-00009
  11. Li F, Feng QL, Cui FZ, Li HD, Schubert H. A simple biomimetic method for calcium phosphate coating. Surf Coat Technol 2002;154:88-93 https://doi.org/10.1016/S0257-8972(01)01710-8
  12. Choi JS, Bobdnaski D, Koller M et al. Calcium phosphate coating of nickel-titanium shape-memory alloys. Coating procedure and adherence of leukocytes and platelets. Biomaterials 2003;24:3689-3696 https://doi.org/10.1016/S0142-9612(03)00241-2
  13. Tas AC, Aldinger F. Formation of apatitic calcium phosphates in a Na-K-phosphate solution of pH 7.4. J Mater Sci Mater Med 2005;16:167-174 https://doi.org/10.1007/s10856-005-5919-5
  14. Vuola J, Goransson H, Bohling T, Asko-Seljavaara S. Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials 1996;17:1761-1766 https://doi.org/10.1016/0142-9612(95)00351-7
  15. Hollinger JO, Kleinschmidt JC. The critical size defects as an experimental model to test bone repair materials. J Craniofac Surg 1990;2:237-293
  16. Schmitz JP, Hollinger JO. The critical size defects as an experimental model for craniomandibular nonunions. Clin Orthop 1986;205:299-308
  17. Blom EJ, Klein-Nulend J, Yin L, van Waas MAJ, Burger EH. Transforming growth factor ${\beta}-1$ incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects. Clin Oral Implants Res 2001;12: 609-616 https://doi.org/10.1034/j.1600-0501.2001.120609.x
  18. Bosch C, Melsen B, Vargervik K. Importance of the critical size bone defect in testing bone-regenerating materials. J Craniofac Surg 1998;9:310-316 https://doi.org/10.1097/00001665-199807000-00004
  19. Donos N, Lang NP, Karoussis I et al. Effect of GBR in combination with deproteinized bovine bone mineral and/or enamel matrix proteins on the healing of critical-size defects. Clin Oral Implants Res 2004;15:101-111 https://doi.org/10.1111/j.1600-0501.2004.00986.x
  20. Mah J, Hung J, Wang J, Salih E. The efficacy of various alloplastic bone grafts on the healing of rat calvarial defects. Eur J Orthod 2004;26:475-482 https://doi.org/10.1093/ejo/26.5.475
  21. Slotte C, Lundgren D. Augmentation of calvarial tissue using non-permeable silicone domes and bovine bone mineral. An experimental study in the rat. Clin Oral Implants Res 1999;10:468-476 https://doi.org/10.1034/j.1600-0501.1999.100605.x
  22. Carmagnola D, Adriaens P, Berglundh T. Healing of human extraction sockets filled with Bio-Oss. Clin Oral Implants Res 2003;14:137-143 https://doi.org/10.1034/j.1600-0501.2003.140201.x
  23. Handschel J, Wiesmann HP, Stratmann U et al. TCP is hardly resorbed and not osteoconductive in a non-loading calvarial model. Biomaterials 2002;23:1689-1695 https://doi.org/10.1016/S0142-9612(01)00296-4
  24. Moreira-Gonzalez A, Lobocki C, Barakat K et al. Evaluation of 45S5 bioactive glass combined as a bone substitute in the reconstruction of critical size calvarial defects in rabbits. J Craniofac Surg 2005;16:63-70 https://doi.org/10.1097/00001665-200501000-00013
  25. Conejero JA, Lee JA, Ascherman JA. Cranial defect reconstruction in an experimental model using different mixtures of bioglass and autologous bone. J Craniofac Surg 2007;18:1290-1295 https://doi.org/10.1097/scs.0b013e3180f610c7
  26. Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 2003;14:195-200 https://doi.org/10.1023/A:1022842404495
  27. Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratio of HA/-TCP in periodontal osseous defects. J Periodontol 1992;63:729-723 https://doi.org/10.1902/jop.1992.63.9.729
  28. Wang C, Duan Y, Markovic B et al. Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials 2004;25:2949-2956 https://doi.org/10.1016/j.biomaterials.2003.09.088
  29. Barrere F, van der Valk CM, Dalmeijer RAJ et al. Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res A 2003;66: 779-788
  30. Yuan H, Zou P, Yang A et al., Zhang X, de Bruijn JD, de Groot K. Bone morphogenetic protein and ceramic-induced osteogenesis. J Mater Sci Mater Med 1998;9:717-721 https://doi.org/10.1023/A:1008998817977
  31. Neo M, Nakamura T, Ohtsuki C, Kokubo T, Yamamuro T. Apatite formation of three kinds of bioactive materials at an early stage in vivo: A comparative study by transmission electron microscopy. J Biomed Mater Res 1993;27: 999-1006 https://doi.org/10.1002/jbm.820270805
  32. Yubao L, Klein CPAT, Xingdong Z, de Groot K. Formation of a bone apatite-like layer on the surface of porous hydroxyapatite ceramics. Biomaterials 1994;15:835-841 https://doi.org/10.1016/0142-9612(94)90039-6
  33. Klinge B, Alberius P, Isaksson S, Jonsson J. Osseous response to implanted natural bone mineral and synthetic hydroxyapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofac Surg 1992;50:241-249 https://doi.org/10.1016/0278-2391(92)90320-Y
  34. Yildirim M, Spiekermann H, Handt A, Edelhoff D. Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site: a histological and histomorphometric clinical study in humans. Int J Oral Maxillofac Implants 2001;16:23-33
  35. Sartori S, Silvestri M, Forni F et al. Ten-year follow-up in a maxillary sinus augmentation using anorganic bovine bone (Bio-Oss). A case report with histomorphometric evaluation. Clin Oral Implants Res 2003;14:369-372 https://doi.org/10.1034/j.1600-0501.2003.140316.x