• 제목/요약/키워드: Rat adrenal gland

검색결과 88건 처리시간 0.023초

Influence of Glibenclamide on Catecholamine Secretion in the Isolated Rat Adrenal Gland

  • No, Hae-Jeong;Woo, Seong-Chang;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제15권2호
    • /
    • pp.108-117
    • /
    • 2007
  • The aim of the present study was to investigate the effect of glibenclamide, a hypoglycemic sulfonylurea, which selectively blocks ATP-sensitive K$^+$ channels, on secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane depolarization from the isolated perfused rat adrenal glands. The perfusion of glibenclamide (1.0 mM) into an adrenal vein for 90 min produced time-dependently enhanced the CA secretory responses evoked by ACh (5.32 mM), high K$^+$ (a direct membrane depolarizer, 56 mM), DMPP (a selective neuronal nicotinic receptor agonist, 100 ${\mu}$M for 2 min), McN-A-343 (a selective muscarinic M1 receptor agonist, 100 ${\mu}$M for 2 min), Bay-K-8644 (an activator of L-type dihydropyridine Ca$^{2+}$ channels, 10 ${\mu}$M for 4 min) and cyclopiazonic acid (an activator of cytoplasmic Ca$^{2+}$-ATPase, 10 ${\mu}$M for 4 min). In adrenal glands simultaneously preloaded with glibenclamide (1.0 mM) and nicorandil (a selective opener of ATP-sensitive K$^+$ channels, 1.0 mM), the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to the considerable extent of the control release in comparison with that of glibenclamide-treatment only. Taken together, the present study demonstrates that glibenclamide enhances the adrenal CA secretion in response to stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization from the isolated perfused rat adrenal glands. It seems that this facilitatory effect of glibenclamide may be mediated by enhancement of both Ca$^{2+}$ influx and the Ca$^{2+}$ release from intracellular store through the blockade of K$_{ATP}$ channels in the rat adrenomedullary chromaffin cells. These results suggest that glibenclamide-sensitive K$_{ATP}$ channels may play a regulatory role in the rat adrenomedullary CA secretion.

Mechanism of Leptin-Induced Potentiation of Catecholamine Secretion Evoked by Cholinergic Stimulation in the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Choi, Deok-Ho;Kang, Moo-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.227-235
    • /
    • 2004
  • The aim of the present study was to examine the effect of leptin on CA release from the isolated perfused model of the rat adrenal gland, and to establish its mechanism of action. Leptin $(1{\sim}100\;ng/ml)$, when perfused into an adrenal vein of the rat adrenal gland for 60 min, enhanced a dose-dependently the secretory responses of CA evoked by ACh $(5.32{\times}10^{-3}\;M)$, DMPP $(10^{-4}\;M)$ and McN-A-343 $(10^{-4}\;M)$, although it alone has weak effect on CA secretion. However, it did not affect the CA secretion evoked by excess $K^+\;(5.6{\times}10^{-2}\;M)$. Leptin alone produced a weak secretory response of the CA. Moreover, leptin (10 ng/ml) in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$ ATPase. However, in the presence of U0126 $(1\;{\mu}M)$, an inhibitor of mitogen-activated protein kinase (MAPK), leptin no longer enhanced the CA secretion evoked by ACh and DMPP. Furthermore, in the presence of anti-leptin (10 ng/ml), an antagonist of Ob receptor, leptin (10 ng/ml) also no longer potentiated the CA secretory responses evoked by DMPP and Bay-K-8644. Collectively, these experimental results suggest that leptin enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors), but does not that by membrane depolarization. It seems that this enhanced effect of leptin may be mediated by activation of U0126-sensitive MAPK through the leptin receptors, which is probably relevant to the activation of the dihydropyridine L-type $Ca^{2+}$ channels located on the rat adrenomedullary chromaffin cells.

Influence of Total Ginseng Saponin on Catecholamine Secretion Evoked by Nicotinic Receptor Stimulation in the Perfused Rat Adrenal Gland

  • Lim Dong-Yoon;Kil Young-Woo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.401-415
    • /
    • 2002
  • Lim and his coworkers (1987; 1988; 1989) have also found that all of total Ginseng saponin, panaxadiol-and panaxatriol-type saponins cause the increased secretion of catecholamines (CA) in a $Ca^{2+}$ -dependent fashion from the isolated perfused rabbit adrenal glands through the activation of cholinergic (both nicotinic and muscarinic) receptors. These CA secretory effects are partly due to the direct action on the rabbit adrenomedullary chromaffin cells. However, the present study was designed to examine the effect of total ginseng saponin on CA secretion evoked by activation of cholinergic nicotinic receptors in the isolated perfused model of the rat adrenal gland. Total ginseng saponin given (100 ${\mu}g$/20 min) into an adrenal vein did fail to produce alteration of spontaneous CA release from the rat adrenal medulla. Acetylcholine(5.32 mM)- and DMPP(100 ${\mu}M$, a selective nicotinic receptor agonist)-evoked CA secretory responses were reduced markedly after the pretreatment with the total ginseng saponin at a rate of 100 ${\mu}g$/6.2 ml/20 min, respectively. Pretreatment with total ginseng saponin also depressed greatly high potassium (56 mM, a membrane depolarizing agent)- and Bay-K-8644 (10 ${\mu}M$, a calcium channel activator)-induced CA secretions. Taken together, it is thought that total ginseng saponin can inhibit the releasing effect of CA evoked by nicotinic receptor stimulation from the isolated perfused rat adrenal medulla, which seems to be associated to the direct inhibition of influx through L-type calcium channel into the rat adrenomedullary chromaffin cells. It seems that there is species differences in the adrenomedullary catecholamine secretion between the rabbit and rat.

  • PDF

흰쥐 관류부신에서 Histamine 수용체 활성화가 Catecholamine 분비작용에 미치는 영향 (Influence of Histaminergic Receptor Activation on Catecholamine Secretion in The Perfused Rat Adrenal Gland)

  • 임동윤;노상현
    • 대한약리학회지
    • /
    • 제29권1호
    • /
    • pp.43-55
    • /
    • 1993
  • 흰쥐 관류부신에서 histamine의 catecholamine (CA) 분비작용의 특성과 기전을 규명코자 연구한 결과는 다음과 같다. Histamine $(37.5{\sim}150\;{\mu}g)$을 부신정맥내에 주사 하였을 때 현저한 용량 의존성의 CA 분비작용을 나타내었다. 그러나 histamine $(150\;{\mu}g)$을 120분 간격으로 반복 투여시 제 3차 투여시부터는 CA 분비효과가 뚜렷이 감소하였다. 즉, histamine의 반복투여로 인한 반응급강현상을 관찰할 수 있었다. Histamine의 CA 분비작용은 chlorisondamine, diphenhydrarmine, ranitidine, $Ca^{++}-free$ Krebs 용액의 관류, nicardipine 및 TMB-8 등의 전처치로 유의하게 억제 되었으나 pirenzepine의 전처치에 의해서는 별다른 영향을 받지 않았다. 더우기 histamine $(6.8{\times}10^{-5}M)$으로 30분간 관류시킨 후에 ACh $(50{\mu}g)$의 CA 분비작용이 상당히 억제됨을 나타내었다. 이상과 같은 연구 결과로 보아 histamine은 흰쥐 적출관류 부신에서 현저한 CA 분비작용을 나타내었으며 칼슘 의존성이었다. 이러한 CA 분비작용은 $H_1-$$H_2-$ 양수용체의 활성화를 통해서 일어나며 또한 부신의 nicotine 수용체와도 관련성이 있는 것으로 사료된다.

  • PDF

흰쥐 난소 및 부신에서 Steroidogenic Acute Regulatory Protein mRNA의 발현에 관한 연구 (Identification of Steroidogenic Acute Regulatory Protein mRNA in the Rat Ovary and Adrenal G land)

  • 김명옥
    • 한국발생생물학회지:발생과생식
    • /
    • 제2권1호
    • /
    • pp.39-43
    • /
    • 1998
  • 스테로이드 호르몬의 합성은 콜레스테롤로부터 시작되고 Steroidogenic acute regulatory protein(StAR)은 스테로이드의 합성과정에서 콜레스테롤을 미토콘드리아의 안으로 신속하게 운반하는 역할을 한다. 스테로이드 호르몬은 난소, 부신, 고환에서 합성되며 본 연구에서는 흰쥐 난소와 부신에서 StAr mRNA의 발현 양상을 in situ hybridization 기법을 이용하여 조사하였다. 난소의 경우 StAR mRNa는 프로게스테론을 분비하는 황체에서 강한 발현을 보였고 엔드로겐을 분비하는 난포막세포에서도 약한 발현을 보였으며 에스트로겐을 분비하는 과립막세포에서는 발현되지 않았다. 황체에서도 황체의 발달 저도에 따라 차이를 보였고 성장한 황체에서는 강한 발현을 보인 반면, 퇴화하는 황체에서는 약한 발현을 보였다. 부신에서 StAR mRNA는 피질에서 강한 발현을 보였고 수질에서는 발현되지 않았다. 특히, 피질의 토리층에서보다 다발층과 그물층에서 강한 발현을 보였다. 난소와 부신에서 StAR mRNA는 스테로이드 호르몬의 종류에 따라서 발현 양상이 달랐고 스테로이드 호르몬 합성의 초기 단계에 관여함을 알 수 있었다.

  • PDF

Influence of Strychnine on Catecholamine Release Evoked by Activation of Cholinergic Receptors from the Perfused Rat Adrenal Gland

  • Yu, Byung-Sik;Kim, Byeong-Cheol;Oh, Song-Hoon;Kim, Il-Sik;Lee, Bang-Hun;Cho, Seong-Ho;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권3호
    • /
    • pp.243-251
    • /
    • 2001
  • The present study was attempted to investigate the effect of strychnine on catecholamine (CA) secretion evoked by ACh, high $K^+,$ DMPP and McN-A-343 from the isolated perfused rat adrenal gland. The perfusion of strychnine $(10^{-4}\;M)$ into an adrenal vein for 20 min produced great inhibition in CA secretory responses evoked by ACh $(5.32{\times}10^{-3}\;M),$ DMPP $(10^{-4}\;M\;for\;2\;min)$ and McN-A-343 $(10^{-4}\;M\;for\;2\;min),$ but did not alter CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M).$ Strychnine itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands preloaded simultaneously with strychnine $(10^{-4}\;M)$ and glycine (an agonist of glycinergic receptor, $10^{-4}\;M),$ CA secretory responses evoked by ACh, DMPP and McN-A-343 were considerably recovered to some extent when compared with those evoked by treatment with strychnine only. However, CA secretion by high $K^+\;(5.6{\times}10^{-2}\;M)$ was not affected. Taken together, these results demonstrate that strychnine inhibits greatly the CA secretory responses evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors, but does not affect that by membrane depolarization. It is suggested that strychnine-sensitive glycinergic receptors are localized in rat adrenal medullary chromaffin cells.

  • PDF

Mechanism of leptin-induced catecholamine secretion in the perfused rat adrenal medulla

  • Lim, Dong-Yoon;Kim, Ok-Min;Shin, Hye-Gyeong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.83.2-83.2
    • /
    • 2003
  • It has been demonstrated the presence of leptin receptors (Ob-Ra) on epinephrine-secreting chromaffin cells in rat adrenal medulla, suggesting that leptin may directly affect the adrenal medulla (Cao et al., 1997). Leptin is found to stimulate catecholamine (CA) synthesis in cultured bovine adrenal medullary cells (Utsumomiya et al., 2001; Shibuya et al., 2002)and cultured porcine adrenal medullary cells (Takekoshi et al., 2001). Thus, the present study was designed to examine the effect of leptin on CA release from the isolated perfused rat adrenal gland, and to establish its mechanism of action. (omitted)

  • PDF

Mechanism of Epibatidine-Induced Catecholamine Secretion in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Lim, Geon-Han;Oh, Song-Hoon;Kim, Il-Sik;Kim, Il-Hwan;Woo, Seong-Chang;Lee, Bang-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권3호
    • /
    • pp.259-270
    • /
    • 2001
  • The present study was attempted to investigate the characteristics of epibatidine on secretion of catecholamines (CA) from the isolated perfused model of the rat adrenal gland, and to establish the mechanism of action. Epibatidine $(3{\times}10^{-8}\;M)$ injected into an adrenal vein produced a great inhibition in secretory response of CA from the perfused rat adrenal gland. However, upon the repeated injection of epibatidine $(3{\times}10^{-8}\;M)$ at 15 min-intervals, CA secretion was rapidly decreased after second injection of epibatidine. However, there was no statistical difference between CA secretory responses of both 1st and 2nd periods by the successive administration of epibatidine at 120 min-intervals. Tachyphylaxis to releasing effects of CA evoked by epibatidine was observed by the repeated administration. Therefore, in all subsequent experiments, epibatidine was not administered successively more than twice only 120 min-intervals. The epibatidine-induced CA secretion was markedly inhibited by the pretreatment with atropine, chlorisondamine, pirenzepine, nicardipine, TMB-8, and perfusion of $Ca^{2+}-free$ Krebs solution containing EGTA, while was not affected by diphenhydramine. Moreover, the CA secretion evoked by ACh for 1st period $(0{\sim}4\;min)$ was greatly potentiated by the simultaneous perfusion of epibatidine $(1.5{\times}10^{-8}\;M),$ but followed by time-dependently gradual reduction after 2nd period. The CA release evoked by high potassium $(5.6{\times}10^{-8}\;M),$ for 1st period $(0{\sim}4\;min)$ was also enhanced by the simultaneous perfusion of epibatidine, but those after 2nd period were not affected. Taken together, these experimental data suggest that epibatidine causes catecholamine secretion in a calcium dependent fashion from the perfused rat adrenal gland through activation of neuronal cholinergic (nicotinic and muscarinic) receptors located in adrenomedullary chromaffin cells. It also seems that epibatidine-evoked catecholamine release is not relevant to stimulation of histaminergic receptors.

  • PDF

Fluoride가 적출장기(摘出臟器)의 Catecholamine 유리(遊離) 및 Monoamine Oxidase 활성도(活性度)에 미치는 영향(影響) (The Influence of Sodium Fluoride on the Release of Catecholamine from Perfused Organs and Monoamine Oxidase Activity)

  • 천연숙;김성숙;이경희;신경철
    • 대한약리학회지
    • /
    • 제8권2호
    • /
    • pp.41-47
    • /
    • 1972
  • Fluorides were supposed to exert a stimulatory action on the catecholamine release. In this study, the authors attempted to investigate the action of sodium fluoride on the catecholamine release from the isolated perfused cow adrenal gland and rat heart. And also the inhibitory effect of sodium fluoride on the monoamine oxidase activity in rat heart and liver mitochondria was investigated. The monoamine oxidase activity was measured by the conversion of benzylamine to benzaldehyde. The results obtained were follows; 1. Sodium fluoride stimulated the release of catecholamine from the isolated perfused cow adrenal gland and rat heart. 2. Sodium fluoride inhibited the rat heart and liver mitochondrial monoamine oxidase activity.

  • PDF

INFLUENCE OF GLUCOCORTICOIDS ON NICOTINIC AND MUSCARINIC STIMULATION-INDUCED CATECHOL-AMINE SECRETION FROM THE RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Lee, Jae-Joon;Park, Cheol-Hee;Ko, Suk-Tai
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.242-242
    • /
    • 1996
  • The influence of glucocorticoids on the secretory responses of catecholamines (CA) evoked by acetylcholine (ACh), DMPP, McN-A-343, excess K$\^$+/ and Bay-K-8644 from the isolated perfused rat adrenal gland and to clarify the mechanism of its action. The perfusion of the synthetic glucocorticoid dexamethasone (10-100 uM) into an adrenal vein for 20min produced relatively a dose-dependent inhibition in CA secretion evoked by ACh (5.32mM), excess K$\^$+/ (56mM), DMPP (a selective nicotinic receptor agonist, 100uM for 2min), McN-A-343 (a muscarinic receptor agonist, 100uM for 4min), Bay-K-8644 (a calcium channel activator, 10 uM for 4min) and cyclopiazonic acid (a releaser of intracellular Ca$\^$2+/, 10uM for 4min).

  • PDF